Skip to main content
Log in

Effects of antidepressants on the performance in the forced swim test of two psychogenetically selected lines of rats that differ in coping strategies to aversive conditions

  • original investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

The selective breeding of Roman low-avoidance (RLA) and high-avoidance (RHA) rats for, respectively, poor versus rapid acquisition of active avoidance in a shuttle-box has produced two phenotypes that differ drastically in the reactivity to stressful stimuli: in tests used to assess emotionality, RLA rats display passive (“reactive”) coping and robust hypothalamus–pituitary–adrenal (HPA) axis reactivity, whereas RHA rats show proactive coping and blunted HPA axis responses. The behavioral and neuroendocrine traits that distinguish these lines suggest that RLA rats may be prone, whereas RHA rats may be resistant to develop depression-like behavior when exposed to stressful experimental conditions.

Objective and methods

To evaluate the performance of the Roman lines in the forced swim test, immobility, climbing, and swimming were assessed under baseline conditions (i.e., pretest in naïve animals or test after the administration of vehicle), and after subacute treatment with desipramine, fluoxetine, and chlorimipramine.

Results

Under baseline conditions, RLA rats displayed greater immobility and fewer climbing counts than RHA rats. In RLA rats, desipramine, fluoxetine, and chlorimipramine decreased immobility; moreover, desipramine and chlorimipramine increased climbing, whereas fluoxetine increased swimming. In RHA rats, none of these drugs affected immobility, swimming, or climbing.

Conclusions

RLA and RHA rats represent two divergent phenotypes respectively susceptible and resistant to display depression-like behavior in the forced swim test. Hence, comparative studies in these lines may help to develop novel working hypotheses on the relationships among genotype, temperament traits, and neural mechanisms underlying the vulnerability or resistance to stress-induced depression in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • aan het Rot M, Mathew SJ, Charney DS (2009) Neurobiological mechanisms in major depressive disorder. CMAJ 180:305–313. doi:10.1503/cmaj.080697

    PubMed  Google Scholar 

  • Aguilar R, Gil L, Flint J, Gray JA, Dawson GR, Driscoll P, Giménez-Llort L, Escorihuela RM, Fernández-Teruel A, Tobeña A (2002) Learned fear, emotional reactivity and fear of heights: a factor analytic map from a large F2 intercross of Roman rat strains. Brain Res Bull 57:17–26. doi:10.1016/S0361-9230(01)00632-3

    Article  PubMed  Google Scholar 

  • Armario A, Gavaldà A, Martí J (1995) Comparison of the behavioural and endocrine response to forced swimming stress in five inbred strains of rats. Psychoneuroendocrinology 20:879–890. doi:10.1016/0306-4530(95)00018-6

    Article  PubMed  CAS  Google Scholar 

  • Bignami G (1965) Selection for high rates and low rates of avoidance conditioning in the rat. Anim Behav 13:221–227. doi:10.1016/0003-3472(65)90038-2

    Article  PubMed  CAS  Google Scholar 

  • Borsini F, Lecci A, Sessarego A, Frassine R, Meli A (1989) Discovery of antidepressant activity by forced swimming test may depend on pre-exposure of rats to a stressful situation. Psychopharmacology 97:183–188. doi:10.1007/BF00442247

    Article  PubMed  CAS  Google Scholar 

  • Carrasco J, Márquez C, Nadal R, Tobeña A, Fernández-Teruel A, Armario A (2008) Characterization of central and peripheral components of the hypothalamus-pituitary-adrenal axis in the inbred Roman rat strains. Psychoneuroendocrinology 33:437–445. doi:10.1016/j.psyneuen.2008.01.001

    Article  PubMed  CAS  Google Scholar 

  • Charnay Y, Steimer T, Huguenin C, Driscoll P (1995) [3H] Paroxetine binding sites: brain regional differences between two psychogenetically selected lines of rats. Neurosci Res Comm 16:29–35

    CAS  Google Scholar 

  • Charney DS (2004) Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. Am J Psychiatry 161:195–216

    Article  PubMed  Google Scholar 

  • Corda MG, Lecca D, Piras G, Di Chiara G, Giorgi O (1997a) Biochemical parameters of dopaminergic and GABAergic neurotransmission in the CNS of Roman high-avoidance and Roman low-avoidance rats. Behav Genet 27:527–536

    Article  PubMed  CAS  Google Scholar 

  • Corda MG, Lecca D, Piras G, Di Chiara G, Giorgi O (1997b) Tail-pinch and pentylenetetrazol increase the release of serotonin in the celebral cortex of Roman high-avoidance, but not low avoidance rats. Neurosci. Meeting Abstract book 23:1850

    Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Page ME, Lucki I (2005a) Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology 182:335–344. doi:10.1007/s00213-005-0093-5

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Valentino RJ, Lucki I (2005b) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 29:547–569. doi:10.1016/j.neubiorev.2005.03.008

    Article  PubMed  CAS  Google Scholar 

  • D’Angio M, Serrano A, Driscoll P, Scatton B (1988) Stressful environmental stimuli increase extracellular DOPAC levels in the prefrontal cortex of hypoemotional (Roman high-avoidance) but not hyperemotional (Roman low-avoidance) rats. An in vivo voltammetric study. Brain Res 451:237–247. doi:10.1016/0006-8993(88)90768-8

    Article  PubMed  Google Scholar 

  • De Pablo JM, Parra A, Segovia S, Guillamón A (1989) Learned immobility explains the behavior of rats in the forced swimming test. Physiol Behav 46:229–237. doi:10.1016/0031-9384(89)90261-8

    Article  PubMed  Google Scholar 

  • Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 121:66–72. doi:10.1007/BF02245592

    Article  PubMed  CAS  Google Scholar 

  • Driscoll P, Bättig K (1982) Behavioral, emotional and neurochemical profiles of rats selected for extreme differences in active, two-way avoidance performance. In: Lieblich I (ed) Genetics of the brain. Elsevier, Amsterdam, pp 95–123

    Google Scholar 

  • Driscoll P, Escorihuela RM, Fernández-Teruel A, Giorgi O, Schwegler H, Steimer T, Wiersma A, Corda MG, Flint J, Koolhaas JM, Langhans W, Schulz PE, Siegel J, Tobeña A (1998) Genetic selection and differential stress responses: the Roman lines/strains of rats. Ann N Y Acad Sci 851:501–510. doi:10.1111/j.1749-6632.1998.tb09029.x

    Article  PubMed  CAS  Google Scholar 

  • Driscoll P, Fernández-Teruel A, Corda MG, Giorgi O, Steimer T (2009) Some guidelines for defining personality differences in rats. In: Kim Y-K (ed) Handbook of behavior genetics. Springer, New York, pp 281–300, ISBN: 978-0-387-76726-0

    Chapter  Google Scholar 

  • Dulawa SC, Holick KA, Gundersen B, Hen R (2004) Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29:1321–1330. doi:10.1038/sj.npp.1300433

    Article  PubMed  CAS  Google Scholar 

  • El Yacoubi M, Bouali S, Popa D, Naudon L, Leroux-Nicollet I, Hamon M, Costentin J, Adrien J, Vaugeois JM (2003) Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression. Proc Natl Acad Sci USA 100:6227–6232. doi:10.1073/pnas.1034823100

    Article  PubMed  CAS  Google Scholar 

  • Escorihuela RM, Tobeña A, Driscoll P, Fernández-Teruel A (1995a) Effects of training, early handling, and perinatal flumazenil on shuttle box acquisition in Roman low-avoidance rats: toward overcoming a genetic deficit. Neurosci Biobehav Rev 19:353–367. doi:10.1016/0149-7634(94)00051-2

    Article  PubMed  CAS  Google Scholar 

  • Escorihuela RM, Tobeña A, Fernández-Teruel A (1995b) Environmental enrichment and postnatal handling prevent spatial learning deficits in aged hypoemotional (Roman high-avoidance) and hyperemotional (Roman low-avoidance) rats. Learn Memory 2:40–48. doi:10.1101/lm.2.1.40

    Article  CAS  Google Scholar 

  • Escorihuela RM, Fernández-Teruel A, Gil L, Aguilar R, Tobeña A, Driscoll P (1999) Inbred Roman high- and low-avoidance rats: differences in anxiety, novelty-seeking, and shuttlebox behaviors. Physiol Behav 67:19–26. doi:10.1016/S0031-9384(99)00064-5

    Article  PubMed  CAS  Google Scholar 

  • Fattore L, Piras G, Corda MG, Giorgi O (2009) The Roman high- and low-avoidance rat lines differ in the acquisition, maintenance, extinction, and reinstatement of intravenous cocaine self-administration. Neuropsychopharmacology 34:1091–1101. doi:10.1038/npp.2008.43

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Teruel A, Driscoll P, Gil L, Aguilar R, Tobeña A, Escorihuela RM (2002a) Enduring effects of environmental enrichment on novelty seeking, saccharin and ethanol intake in two rat lines (RHA/Verh and RLA/Verh) differing in incentive-seeking behavior. Pharmacol Biochem Behav 73:225–231. doi:10.1016/S0091-3057(02)00784-0

    Article  PubMed  Google Scholar 

  • Fernández-Teruel A, Escorihuela RM, Gray JA, Aguilar R, Gil L, Gimenez-Llort L, Tobeña A, Bhomra A, Nicod A, Mott R, Driscoll P, Dawson GR, Flint J (2002b) A quantitative trait locus influencing anxiety in the laboratory rat. Genome Res 12:618–626. doi:10.1101/gr.203402

    PubMed  Google Scholar 

  • Ferré P, Fernández-Teruel A, Escorihuela RM, Driscoll P, Corda MG, Giorgi O, Tobeña A (1995) Behavior of the Roman/Verh high- and low-avoidance rat lines in anxiety tests: relationship with defecation and self-grooming. Physiol Behav 58:1209–1213. doi:10.1016/0031-9384(95)02068-3

    Article  PubMed  Google Scholar 

  • Fleischmann A, Prolov K, Abarbanel J, Belmaker RH (1995) The effect of transcranial magnetic stimulation of rat brain on behavioral models of depression. Brain Res 699:130–132. doi:10.1016/0006-8993(95)01018-Q

    Article  PubMed  CAS  Google Scholar 

  • García-Marquez C, Giralt M, Armario A (1987) Long-lasting effects of chronic chlorimipramine treatment of rats on exploratory activity on a hole-board, and on immobility in the forced swimming test. Eur J Pharmacol 142:385–389, PubMed PMID: 3428352

    Article  PubMed  Google Scholar 

  • Gelfin Y, Gorfine M, Lerer B (1998) Effect of clinical doses of fluoxetine on psychological variables in healthy volunteers. Am J Psychiatry 155:290–292, http://ajp.psychiatryonline.org/cgi/content/full/155/2/290

    PubMed  CAS  Google Scholar 

  • Gentsch C, Lichtsteiner M, Driscoll P, Feer H (1982) Differential hormonal and physiological responses to stress in Roman high- and low-avoidance rats. Physiol Behav 28:259–263. doi:10.1016/0031-9384(82)90072-5

    Article  PubMed  CAS  Google Scholar 

  • Giorgi O, Valentini V, Piras G, Di Chiara G, Corda MG (1999) Palatable food differentially activates dopaminergic function in the CNS of Roman/Verh lines and strains of rats. Soc Neurosci Meeting Abs Book 25:2152

    Google Scholar 

  • Giorgi O, Lecca D, Piras G, Driscoll P, Corda MG (2003a) Dissociation between mesocortical dopamine release and fear-related behaviors in two psychogenetically selected lines of rats that differ in coping strategies to aversive conditions. Eur J Neurosci 17:2716–2726. doi:10.1046/j.1460-9568.2003.02689.x

    Article  PubMed  CAS  Google Scholar 

  • Giorgi O, Piras G, Lecca D, Hansson S, Driscoll P, Corda MG (2003b) Differential neurochemical properties of central serotonergic transmission in Roman high- and low-avoidance rats. J Neurochem 86:422–431. doi:10.1046/j.1471-4159.2003.01845.x

    Article  PubMed  CAS  Google Scholar 

  • Giorgi O, Piras G, Lecca D, Corda MG (2005) Differential activation of dopamine release in the nucleus accumbens core and shell after acute or repeated amphetamine injections: a comparative study in the Roman high- and low-avoidance rat lines. Neuroscience 135:987–998. doi:10.1016/j.neuroscience.2005.06.075

    Article  PubMed  CAS  Google Scholar 

  • Giorgi O, Piras G, Corda MG (2007) The psychogenetically selected roman high and low-avoidance rat lines: a model to study the individual vulnerability to drug addiction. Neurosc Biobehav Rev 31:148–163

    Article  CAS  Google Scholar 

  • Holsboer F (2001) Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord 62:77–91. doi:10.1016/S0165-0327(00)00352-9

    Article  PubMed  CAS  Google Scholar 

  • Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 156:837–841, http://ajp.psychiatryonline.org/cgi/content/full/156/6/837

    PubMed  CAS  Google Scholar 

  • Kessler RC (1997) The effects of stressful life events on depression. Annu Rev Psychol 48:191–214. doi:10.1146/annurev.psych.48.1.191

    Article  PubMed  CAS  Google Scholar 

  • Krahl SE, Senanayake SS, Pekary AE, Sattin A (2004) Vagus nerve stimulation (VNS) is effective in a rat model of antidepressant action. J Psychiatry Res 38:237–240. doi:10.1016/j.jpsychires.2003.11.005

    Article  Google Scholar 

  • López-Aumatell R, Vicens-Costa E, Guitart-Masip M, Martínez-Membrives E, Valdar W, Johannesson M, Cañete T, Blázquez G, Driscoll P, Flint J, Tobeña A, Fernández-Teruel A (2009) Unlearned anxiety predicts learned fear: a comparison among heterogeneous rats and the Roman rat strains. Behav Brain Res 202:92–101. doi:10.1016/j.bbr.2009.03.024

    Article  PubMed  Google Scholar 

  • López-Rubalcava C, Lucki I (2000) Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test. Neuropsychopharmacology 22:191–199. doi:10.1038/sj.npp.1395424

    Article  PubMed  Google Scholar 

  • Lucki I (1997) The forced swimming test as a model for core and component behavioural effects of antidepressant drugs. Behav Pharmacol 8:523–532, http://journals.lww.com/behaviouralpharm/Abstract/1997/11000

    Article  PubMed  CAS  Google Scholar 

  • Moreno M, Cardona D, Gómez MJ, Sánchez-Santed F, Tobeña A, Fernández-Teruel A, Campa L, Suñol C, Escarabajal MD, Torres C, Flores P (2010) Impulsivity characterization in the roman high- and low-avoidance rat strains: behavioral and neurochemical differences. Neuropsychopharmacology 35:1198–1208. doi:10.1038/npp.2009.224

    Article  PubMed  Google Scholar 

  • Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–1159. doi:10.1016/j.biopsych.2005.09.018

    Article  PubMed  CAS  Google Scholar 

  • Nil R, Bättig K (1981) Spontaneous maze ambulation and Hebb-Williams learning in Roman high-avoidance and Roman low-avoidance rats. Behav Neural Biol 33:465–475, PMID: 7332509

    Article  PubMed  CAS  Google Scholar 

  • Overstreet DH (1993) The Flinders sensitive line rats: a genetic animal model of depression. Neurosci Biobehav Rev 17:51–68. doi:10.1016/S0149-7634(05)80230-1

    Article  PubMed  CAS  Google Scholar 

  • Paré WP (1989) “Behavioral despair” test predicts stress ulcer in WKY rats. Physiol Behav 46:483–487. doi:10.1016/0031-9384(89)90025-5

    Article  PubMed  Google Scholar 

  • Piras G, Lecca D, Corda MG, Giorgi O (2003) Repeated morphine injections induce behavioural sensitization in Roman high- but not in Roman low-avoidance rats. Neuroreport 14:2433–2438, http://journals.lww.com/neuroreport/pages/articleviewer.aspx?year=2003&issue=12190&article=00029&type=abstract

    Article  PubMed  CAS  Google Scholar 

  • Poldinger W (1963) Comparison between imipramine and desipramine in normal subjects and their action in depressive patients. Psychopharmacologia 4:302–307. doi:10.1007/BF00408186

    Article  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732. doi:10.1038/266730a0

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391, PMID: 204499

    Article  PubMed  CAS  Google Scholar 

  • Pucilowski O, Overstreet DH (1993) Effect of chronic antidepressant treatment on responses to apomorphine in selectively bred rat strains. Brain Res Bull 32:471–475. doi:10.1016/0361-9230(93)90293-K

    Article  PubMed  CAS  Google Scholar 

  • Siegel J (1997) Augmenting and reducing of visual evoked potentials in high- and low-sensation seeking humans, cats, and rats. Behav Genet 27:557–563. doi:10.1023/A:1021409132320

    Article  PubMed  CAS  Google Scholar 

  • Steimer T, Driscoll P (2003) Divergent stress responses and coping styles in psychogenetically selected Roman high-(RHA) and low-(RLA) avoidance rats: behavioural, neuroendocrine and developmental aspects. Stress 6:87–100. doi:10.1080/1025389031000111320

    Article  PubMed  CAS  Google Scholar 

  • Steimer T, Python A, Schulz PE, Aubry JM (2007) Plasma corticosterone, dexamethasone (DEX) suppression and DEX/CRH tests in a rat model of genetic vulnerability to depression. Psychoneuroendocrinology 32:575–579. doi:10.1016/j.psyneuen.2007.03.012

    Article  PubMed  CAS  Google Scholar 

  • Tizabi Y, Copeland RL Jr, Brus R, Kostrzewa RM (1999) Antidepressant effects of nicotine in an animal model of depression. Psychopharmacology 142:193–1939

    Article  PubMed  CAS  Google Scholar 

  • Vieira C, De Lima TC, Carobrez Ade P, Lino-de-Oliveira C (2008) Frequency of climbing behavior as a predictor of altered motor activity in rat forced swimming test. Neurosci Lett 445:170–173. doi:10.1016/j.psyneuen.2007.03.012

    Article  PubMed  CAS  Google Scholar 

  • Walker CD, Rivest RW, Meaney MJ, Aubert ML (1989) Differential activation of the pituitary-adrenocortical axis after stress in the rat: use of two genetically selected lines (Roman low- and high-avoidance rats) as a model. J Endocrinol 123:477–485. doi:10.1677/joe.0.1230477

    Article  PubMed  CAS  Google Scholar 

  • Weiss JM, Cierpial MA, West CH (1998) Selective breeding of rats for high and low motor activity in a swim test: toward a new animal model of depression. Pharmacol Biochem Behav 61:49–66. doi:10.1016/S0091-3057(98)00075-6

    Article  PubMed  CAS  Google Scholar 

  • Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110. doi:10.1159/000087097

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by funds from Ministero dell' Università e della Ricerca to M.G.C. and O.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Giorgi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piras, G., Giorgi, O. & Corda, M.G. Effects of antidepressants on the performance in the forced swim test of two psychogenetically selected lines of rats that differ in coping strategies to aversive conditions. Psychopharmacology 211, 403–414 (2010). https://doi.org/10.1007/s00213-010-1904-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1904-x

Keywords

Navigation