Skip to main content
Log in

Neonatal maternal separation in the rat impacts on the stress responsivity of central corticotropin-releasing factor receptors in adulthood

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Adverse events during early developmental stages can induce persistent changes in central stress circuits, leading to increased stress sensitivity in adulthood, as is apparent in the maternally separated (MS) rat model. It is widely accepted that the stress peptide corticotropin-releasing factor (CRF) by binding to CRF1 and 2 receptors (CRFR1 and CRFR2) is key to these phenotypic changes.

Objectives

These studies aim to investigate the effects of maternal separation on central expression of CRFR1 and CRFR2 under basal conditions and following an acute psychological stressor in adulthood.

Methods

Western blotting techniques were employed to examine changes in receptor expression in the hypothalamus, pre-frontal and frontal cortices, amygdala and hippocampus of MS rats as compared to controls. Additionally, the effects of an acute psychological stressor (open field exposure) on these changes were assessed.

Results

Under basal conditions, CRFR1 was elevated in the hypothalamus of MS rats. Exposure to an acute stress had limited effects in non-separated animals but induced significant changes in CRFR1 in the hypothalamus, pre-frontal cortex and hippocampus of MS rats. Additionally, stress-induced increases in CRFR2 were observed in the amygdala of MS rats.

Conclusions

These data demonstrate the discrete and significant alterations in how the brain CRF system responds to acute stress following maternal separation. These studies illustrate that early life perturbations induce persistent changes in central CRF receptor expression and increased sensitivity to stress, which may contribute to the stress-related behavioural changes observed in these animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abel T, Kandel E (1998) Positive and negative regulatory mechanisms that mediate long-term memory storage. Brain Res Brain Res Rev 26:360–378

    Article  PubMed  CAS  Google Scholar 

  • Aisa B, Tordera R, Lasheras B, Del Rio J, Ramirez MJ (2008) Effects of maternal separation on hypothalamic-pituitary-adrenal responses, cognition and vulnerability to stress in adult female rats. Neuroscience 154:1218–1226

    Article  PubMed  CAS  Google Scholar 

  • Bale TL, Vale WW (2004) CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 44:525–557

    Article  PubMed  CAS  Google Scholar 

  • Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE, Koob GF, Vale WW, Lee KF (2000) Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 24:410–414

    Article  PubMed  CAS  Google Scholar 

  • Bhatia V, Tandon RK (2005) Stress and the gastrointestinal tract. J Gastroenterol Hepatol 20:332–339

    Article  PubMed  Google Scholar 

  • Bhatnagar S, Dallman M (1998) Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience 84:1025–1039

    Article  PubMed  CAS  Google Scholar 

  • Blanchard EB, Lackner JM, Sanders K, Krasner S, Keefer L, Payne A, Gudleski GD, Katz L, Rowell D, Sykes M, Kuhn E, Gusmano R, Carosella AM, Firth R, Dulgar-Tulloch L (2007) A controlled evaluation of group cognitive therapy in the treatment of irritable bowel syndrome. Behav Res Ther 45:633–648

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bravo JA, Dinan TG, Cryan JF (2009) Differential Expression of CRFR1 and CRFR2 mRNA in the Amygdala of Two Animal Models of Irritable Bowel Syndrome (IBS): Relevance to Visceral Pain Processing. DDW

  • Chalmers DT, Lovenberg TW, De Souza EB (1995) Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 15:6340–6350

    PubMed  CAS  Google Scholar 

  • Chalmers DT, Lovenberg TW, Grigoriadis DE, Behan DP, De Souza EB (1996) Corticotrophin-releasing factor receptors: from molecular biology to drug design. Trends Pharmacol Sci 17:166–172

    Article  PubMed  CAS  Google Scholar 

  • Chambers JA, Power KG, Durham RC (2004) The relationship between trait vulnerability and anxiety and depressive diagnoses at long-term follow-up of generalized anxiety disorder. J Anxiety Disord 18:587–607

    Article  PubMed  Google Scholar 

  • Charney DS, Deutch A (1996) A functional neuroanatomy of anxiety and fear: implications for the pathophysiology and treatment of anxiety disorders. Crit Rev Neurobiol 10:419–446

    PubMed  CAS  Google Scholar 

  • Dent GW, Smith MA, Levine S (2000) Rapid induction of corticotropin-releasing hormone gene transcription in the paraventricular nucleus of the developing rat. Endocrinology 141:1593–1598

    Article  PubMed  CAS  Google Scholar 

  • Desbonnet L, Garrett L, Daly E, McDermott KW, Dinan TG (2008) Sexually dimorphic effects of maternal separation stress on corticotrophin-releasing factor and vasopressin systems in the adult rat brain. Int J Dev Neurosci 26:259–268

    Article  PubMed  CAS  Google Scholar 

  • Folks DG (2004) The interface of psychiatry and irritable bowel syndrome. Curr Psychiatry Rep 6:210–215

    Article  PubMed  Google Scholar 

  • Gibney SM, Gosselin RD, Dinan TG, Cryan JF (2010) Colorectal distension-induced prefrontal cortex activation in the Wistar-Kyoto rat: implications for irritable bowel syndrome. Neuroscience 165:675–683

    Article  PubMed  CAS  Google Scholar 

  • Goodwin GM (1997) Neuropsychological and neuroimaging evidence for the involvement of the frontal lobes in depression. J Psychopharmacol 11:115–122

    Article  PubMed  CAS  Google Scholar 

  • Greenwood-Van Meerveld B, Johnson AC, Cochrane S, Schulkin J, Myers DA (2005) Corticotropin-releasing factor 1 receptor-mediated mechanisms inhibit colonic hypersensitivity in rats. Neurogastroenterol Motil 17:415–422

    Article  PubMed  CAS  Google Scholar 

  • Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20:78–84

    Article  PubMed  CAS  Google Scholar 

  • Hillhouse EW, Grammatopoulos DK (2006) The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev 27:260–286

    Article  PubMed  CAS  Google Scholar 

  • Hyland NP, Julio-Pieper M, O’Mahony SM, Bulmer DC, Lee K, Quigley EM, Dinan TG, Cryan JF (2009) A distinct subset of submucosal mast cells undergoes hyperplasia following neonatal maternal separation: a role in visceral hypersensitivity? Gut 58:1029–1030, author reply 1030-1

    Article  PubMed  CAS  Google Scholar 

  • Korosi A, Shanabrough M, McClelland S, Liu ZW, Borok E, Gao XB, Horvath TL, Baram TZ (2010) Early-life experience reduces excitation to stress-responsive hypothalamic neurons and reprograms the expression of corticotropin-releasing hormone. J Neurosci 30:703–713

    Article  PubMed  CAS  Google Scholar 

  • Kosten TA, Kehoe P (2010) Immediate and enduring effects of neonatal isolation on maternal behavior in rats. Int J Dev Neurosci 28:53–61

    Article  PubMed  Google Scholar 

  • Kostich WA, Chen A, Sperle K, Largent BL (1998) Molecular identification and analysis of a novel human corticotropin-releasing factor (CRF) receptor: the CRF2gamma receptor. Mol Endocrinol 12:1077–1085

    Article  PubMed  CAS  Google Scholar 

  • Kuhn CM, Schanberg SM (1998) Responses to maternal separation: mechanisms and mediators. Int J Dev Neurosci 16:261–270

    Article  PubMed  CAS  Google Scholar 

  • Liebsch G, Landgraf R, Engelmann M, Lorscher P, Holsboer F (1999) Differential behavioural effects of chronic infusion of CRH 1 and CRH 2 receptor antisense oligonucleotides into the rat brain. J Psychiatr Res 33:153–163

    Article  PubMed  CAS  Google Scholar 

  • Lippmann M, Bress A, Nemeroff CB, Plotsky PM, Monteggia LM (2007) Long-term behavioural and molecular alterations associated with maternal separation in rats. Eur J Neurosci 25:3091–3098

    Article  PubMed  Google Scholar 

  • Mayer EA, Berman S, Suyenobu B, Labus J, Mandelkern MA, Naliboff BD, Chang L (2005) Differences in brain responses to visceral pain between patients with irritable bowel syndrome and ulcerative colitis. Pain 115:398–409

    Article  PubMed  Google Scholar 

  • Nemeroff CB (2004a) Early-life adversity, CRF dysregulation, and vulnerability to mood and anxiety disorders. Psychopharmacol Bull 38(Suppl 1):14–20

    PubMed  Google Scholar 

  • Nemeroff CB (2004b) Neurobiological consequences of childhood trauma. J Clin Psychiatry 65(Suppl 1):18–28

    PubMed  CAS  Google Scholar 

  • O’Mahony S, Chua AS, Quigley EM, Clarke G, Shanahan F, Keeling PW, Dinan TG (2008) Evidence of an enhanced central 5HT response in irritable bowel syndrome and in the rat maternal separation model. Neurogastroenterol Motil 20:680–688

    Article  PubMed  Google Scholar 

  • O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, Quigley EM, Cryan JF, Dinan TG (2009) Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 65:263–267

    Article  PubMed  Google Scholar 

  • O’Malley D, Julio-Pieper M, Gibney SM, Gosselin RD, Dinan TG, Cryan JF (2009) Differential stress-induced alterations of colonic corticotropin-releasing factor receptors in the Wistar Kyoto rat. Neurogastroenterol Motil 22:301–11

    Google Scholar 

  • O’Malley D, Julio-Pieper M, Gibney SM, Dinan TG, Cryan JF (2010a) Distinct alterations in colonic morphology and physiology in two rat models of enhanced stress-induced anxiety- and depression-like behavior. Stress 13:114–122

    Article  Google Scholar 

  • O’Malley D, Dinan TG, Cryan JF (2010b) Alterations in colonic corticotropin-releasing factor receptors in the maternally separated rat model of irritable bowel syndrome: differential effects of acute psychological and physical stressors. Peptides 31(4):662–670

    Google Scholar 

  • Pelleymounter MA, Joppa M, Ling N, Foster AC (2004) Behavioral and neuroendocrine effects of the selective CRF2 receptor agonists urocortin II and urocortin III. Peptides 25:659–666

    Article  PubMed  CAS  Google Scholar 

  • Pisarchik A, Slominski A (2004) Molecular and functional characterization of novel CRFR1 isoforms from the skin. Eur J Biochem 271:2821–2830

    Article  PubMed  CAS  Google Scholar 

  • Plotsky PM, Meaney MJ (1993) Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res 18:195–200

    Article  PubMed  CAS  Google Scholar 

  • Plotsky PM, Thrivikraman KV, Nemeroff CB, Caldji C, Sharma S, Meaney MJ (2005) Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology 30:2192–2204

    Article  PubMed  CAS  Google Scholar 

  • Primus RJ, Yevich E, Baltazar C, Gallager DW (1997) Autoradiographic localization of CRF1 and CRF2 binding sites in adult rat brain. Neuropsychopharmacology 17:308–316

    Article  PubMed  CAS  Google Scholar 

  • Radulovic J, Sydow S, Spiess J (1998) Characterization of native corticotropin-releasing factor receptor type 1 (CRFR1) in the rat and mouse central nervous system. J Neurosci Res 54:507–521

    Article  PubMed  CAS  Google Scholar 

  • Radulovic J, Ruhmann A, Liepold T, Spiess J (1999) Modulation of learning and anxiety by corticotropin-releasing factor (CRF) and stress: differential roles of CRF receptors 1 and 2. J Neurosci 19:5016–5025

    PubMed  CAS  Google Scholar 

  • Reul JM, Holsboer F (2002) Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2:23–33

    Article  PubMed  CAS  Google Scholar 

  • Reyes BA, Valentino RJ, Van Bockstaele EJ (2008) Stress-induced intracellular trafficking of corticotropin-releasing factor receptors in rat locus coeruleus neurons. Endocrinology 149:122–130

    Article  PubMed  CAS  Google Scholar 

  • Roozendaal B, McEwen BS, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10:423–433

    Article  PubMed  CAS  Google Scholar 

  • Ruhmann A, Kopke AK, Dautzenberg FM, Spiess J (1996) Synthesis and characterization of a photoactivatable analog of corticotropin-releasing factor for specific receptor labeling. Proc Natl Acad Sci USA 93:10609–10613

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Kasai T, Nagura Y, Ito H, Kanazawa M, Fukudo S (2005) Corticotropin-releasing hormone receptor 1 antagonist blocks brain-gut activation induced by colonic distention in rats. Gastroenterology 129:1533–1543

    Article  PubMed  CAS  Google Scholar 

  • Sanchez MM, Young LJ, Plotsky PM, Insel TR (1999) Autoradiographic and in situ hybridization localization of corticotropin-releasing factor 1 and 2 receptors in nonhuman primate brain. J Comp Neurol 408:365–377

    Article  PubMed  CAS  Google Scholar 

  • Sandi C, Cordero MI, Ugolini A, Varea E, Caberlotto L, Large CH (2008) Chronic stress-induced alterations in amygdala responsiveness and behavior—modulation by trait anxiety and corticotropin-releasing factor systems. Eur J Neurosci 28:1836–1848

    Article  PubMed  Google Scholar 

  • Sapolsky RM (1996) Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress 1:1–19

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Zbytek B, Pisarchik A, Slominski RM, Zmijewski MA, Wortsman J (2006) CRH functions as a growth factor/cytokine in the skin. J Cell Physiol 206:780–791

    Article  PubMed  CAS  Google Scholar 

  • Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH, Chen R, Marchuk Y, Hauser C, Bentley CA, Sawchenko PE, Koob GF, Vale W, Lee KF (1998) Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20:1093–1102

    Article  PubMed  CAS  Google Scholar 

  • Spencer SJ, Buller KM, Day TA (2005) Medial prefrontal cortex control of the paraventricular hypothalamic nucleus response to psychological stress: possible role of the bed nucleus of the stria terminalis. J Comp Neurol 481:363–376

    Article  PubMed  Google Scholar 

  • Stanford SC (2007) The open field test: reinventing the wheel. J Psychopharmacol 21:134–135

    Article  PubMed  Google Scholar 

  • Steckler T, Dautzenberg FM (2006) Corticotropin-releasing factor receptor antagonists in affective disorders and drug dependence—an update. CNS Neurol Disord Drug Targets 5:147–165

    Article  PubMed  CAS  Google Scholar 

  • Stevenson CW, Spicer CH, Mason R, Marsden CA (2009) Early life programming of fear conditioning and extinction in adult male rats. Behav Brain Res 205:505–510

    Article  PubMed  Google Scholar 

  • Tache Y, Bonaz B (2007) Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J Clin Invest 117:33–40

    Article  PubMed  CAS  Google Scholar 

  • Tache Y, Kiank C, Stengel A (2009) A role for corticotropin-releasing factor in functional gastrointestinal disorders. Curr Gastroenterol Rep 11:270–277

    Article  PubMed  Google Scholar 

  • Tu H, Kastin AJ, Pan W (2007) Corticotropin-releasing hormone receptor (CRHR)1 and CRHR2 are both trafficking and signaling receptors for urocortin. Mol Endocrinol 21:700–711

    Article  PubMed  CAS  Google Scholar 

  • Valdez GR, Zorrilla EP, Rivier J, Vale WW, Koob GF (2003) Locomotor suppressive and anxiolytic-like effects of urocortin 3, a highly selective type 2 corticotropin-releasing factor agonist. Brain Res 980:206–212

    Article  PubMed  CAS  Google Scholar 

  • Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, Prins GS, Perrin M, Vale W, Sawchenko PE (2000) Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 428:191–212

    Article  PubMed  Google Scholar 

  • Vazquez DM, Lopez JF, Van Hoers H, Watson SJ, Levine S (2000) Maternal deprivation regulates serotonin 1A and 2A receptors in the infant rat. Brain Res 855:76–82

    Article  PubMed  CAS  Google Scholar 

  • Venihaki M, Sakihara S, Subramanian S, Dikkes P, Weninger SC, Liapakis G, Graf T, Majzoub JA (2004) Urocortin III, a brain neuropeptide of the corticotropin-releasing hormone family: modulation by stress and attenuation of some anxiety-like behaviours. J Neuroendocrinol 16:411–422

    Article  PubMed  CAS  Google Scholar 

  • Wigger A, Neumann ID (1999) Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol Behav 66:293–302

    Article  PubMed  CAS  Google Scholar 

  • Williams CL, Peterson JM, Villar RG, Burks TF (1987) Corticotropin-releasing factor directly mediates colonic responses to stress. Am J Physiol 253:G582–G586

    PubMed  CAS  Google Scholar 

  • Zorrilla EP, Koob GF (2004) The therapeutic potential of CRF1 antagonists for anxiety. Expert Opin Investig Drugs 13:799–828

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to Dr. Sinead Gibney for inducing the OF stress and thank Patrick Fitzgerald and Dr. Marcela Julio-Pieper for their technical expertise. All experiments were in full accordance with the principles of the European Community Council Directive (86/609/EEC) and the local ethical committee (University College Cork). The authors and their work were supported by a Science Foundation Ireland (grant nos. 02/CE/B124 and 07/CE/B1368) and GlaxoSmithKline. JFC is funded by European Community’s Seventh Framework Programme; grant number FP7/2007-2013, grant agreement 201714.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Cryan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Malley, D., Dinan, T.G. & Cryan, J.F. Neonatal maternal separation in the rat impacts on the stress responsivity of central corticotropin-releasing factor receptors in adulthood. Psychopharmacology 214, 221–229 (2011). https://doi.org/10.1007/s00213-010-1885-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1885-9

Keywords

Navigation