Skip to main content
Log in

A neurochemical yin and yang: does serotonin activate and norepinephrine deactivate the prefrontal cortex?

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

The prefrontal cortex (PFC) receives serotonergic input from the dorsal raphe nucleus of the brainstem, as well as noradrenergic input from another brainstem nucleus, the locus coeruleus. A large number of studies have shown that these two neurotransmitter systems, and drugs that affect them, modulate the functional properties of the PFC in both humans and animal models.

Results

Here I examine the hypothesis that serotonin (5-HT) plays a general role in activating the PFC, whereas norepinephrine (NE) plays a general role in deactivating this brain region. In this manner, the two neurotransmitter systems may have opposing effects on PFC-influenced behavior. To assess this hypothesis, three primary lines of evidence are examined comprising the effects of 5-HT and NE on impulsivity, cognitive flexibility, and working memory.

Discussion

While all of the existing data do not unequivocally support the activation/deactivation hypothesis, there is a large body of support for it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler LA, Spencer TJ, Milton DR, Moore RJ, Michelson D (2005) Long-term, open-label study of the safety and efficacy of atomoxetine in adults with attention-deficit/hyperactivity disorder: an interim analysis. J Clin Psychiatry 66:294–299

    CAS  PubMed  Google Scholar 

  • Allen PP, Cleare AJ, Lee F, Fusar-Poli P, Tunstall N, Fu CH et al (2006) Effect of acute tryptophan depletion on pre-frontal engagement. Psychopharmacology (Berl) 187:486–497

    CAS  Google Scholar 

  • Arnsten AF (2009) Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs 23(Suppl 1):33–41

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Cai JX (1993) Postsynaptic alpha-2 receptor stimulation improves memory in aged monkeys: indirect effects of yohimbine versus direct effects of clonidine. Neurobiol Aging 14:597–603

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Goldman-Rakic PS (1987) Noradrenergic mechanisms in age-related cognitive decline. J Neural Transm Suppl 24:317–324

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Goldman-Rakic PS (1990) Analysis of alpha-2 adrenergic agonist effects on the delayed nonmatch-to-sample performance of aged rhesus monkeys. Neurobiol Aging 11:583–590

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Jentsch JD (1997) The alpha-1 adrenergic agonist, cirazoline, impairs spatial working memory performance in aged monkeys. Pharmacol Biochem Behav 58:55–59

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Cai JX, Goldman-Rakic PS (1988) The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 8:4287–4298

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Mathew R, Ubriani R, Taylor JR, Li BM (1999) Alpha-1 noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biol Psychiatry 45:26–31

    CAS  PubMed  Google Scholar 

  • Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450

    CAS  PubMed  Google Scholar 

  • Aston-Jones G, Rajkowski J, Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46:1309–1320

    CAS  PubMed  Google Scholar 

  • Avery RA, Franowicz JS, Studholme C, van Dyck CH, Arnsten AF (2000) The alpha-2A-adrenoceptor agonist, guanfacine, increases regional cerebral blood flow in dorsolateral prefrontal cortex of monkeys performing a spatial working memory task. Neuropsychopharmacology 23:240–249

    CAS  PubMed  Google Scholar 

  • Bari A, Eagle DM, Mar AC, Robinson ES, Robbins TW (2009) Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology (Berl) 205:273–283

    CAS  Google Scholar 

  • Bass EW Jr, Means LW, McMillen BA (1992) Buspirone impairs performance of a three-choice working memory water escape task in rats. Brain Res Bull 28:455–461

    CAS  PubMed  Google Scholar 

  • Beversdorf DQ, Hughes JD, Steinberg BA, Lewis LD, Heilman KM (1999) Noradrenergic modulation of cognitive flexibility in problem solving. Neuroreport 10:2763–2767

    CAS  PubMed  Google Scholar 

  • Beversdorf DQ, White DM, Chever DC, Hughes JD, Bornstein RA (2002) Central beta-adrenergic modulation of cognitive flexibility. Neuroreport 13:2505–2507

    CAS  PubMed  Google Scholar 

  • Braestrup C, Nielsen M (1976) Regulation in the central norepinephrine neurotransmission induced in vivo by alpha adrenoceptor active drugs. J Pharmacol Exp Ther 198:596–608

    CAS  PubMed  Google Scholar 

  • Brunner D, Hen R (1997) Insights into the neurobiology of impulsive behavior from serotonin receptor knockout mice. Ann N Y Acad Sci 836:81–105

    CAS  PubMed  Google Scholar 

  • Bruno KJ, Freet CS, Twining RC, Egami K, Grigson PS, Hess EJ (2007) Abnormal latent inhibition and impulsivity in coloboma mice, a model of ADHD. Neurobiol Dis 25:206–216

    CAS  PubMed  Google Scholar 

  • Buhot MC, Wolff M, Benhassine N, Costet P, Hen R, Segu L (2003) Spatial learning in the 5-HT1B receptor knockout mouse: selective facilitation/impairment depending on the cognitive demand. Learn Mem 10:466–477

    PubMed  Google Scholar 

  • Burgos H, Mardones L, Campos M, Castillo A, Fernandez V, Hernandez A (2005) Chronic treatment with clomipramine and desipramine induces deficit in long-term visuo-spatial memory of rats. Int J Neurosci 115:47–54

    CAS  PubMed  Google Scholar 

  • Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH et al (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27:699–711

    CAS  PubMed  Google Scholar 

  • Cai JX, Ma YY, Xu L, Hu XT (1993) Reserpine impairs spatial working memory performance in monkeys: reversal by the alpha 2-adrenergic agonist clonidine. Brain Res 614:191–196

    CAS  PubMed  Google Scholar 

  • Campbell HL, Tivarus ME, Hillier A, Beversdorf DQ (2008) Increased task difficulty results in greater impact of noradrenergic modulation of cognitive flexibility. Pharmacol Biochem Behav 88:222–229

    CAS  PubMed  Google Scholar 

  • Cassaday HJ, Norman C, Shilliam CS, Vincent C, Marsden CA (2003) Intraventricular 5, 7-dihydroxytryptamine lesions disrupt acquisition of working memory task rules but not performance once learned. Prog Neuropsychopharmacol Biol Psychiatry 27:147–156

    CAS  PubMed  Google Scholar 

  • Chamberlain SR, Muller U, Blackwell AD, Clark L, Robbins TW, Sahakian BJ (2006) Neurochemical modulation of response inhibition and probalistic learning in humans. Science 311:861–863

    CAS  PubMed  Google Scholar 

  • Chamberlain SR, Del Campo N, Dowson J, Muller U, Clark L, Robbins TW et al (2007a) Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 62:977–984

    CAS  PubMed  Google Scholar 

  • Chamberlain SR, Muller U, Deakin JB, Corlett PR, Dowson J, Cardinal RN et al (2007b) Lack of deleterious effects of buspirone on cognition in healthy male volunteers. J Psychopharmacol 21:210–215

    CAS  PubMed  Google Scholar 

  • Choi Y, Novak JC, Hillier A, Votolato NA, Beversdorf DQ (2006) The effect of alpha-2 adrenergic agonists on memory and cognitive flexibility. Cogn Behav Neurol 19:204–207

    PubMed  Google Scholar 

  • Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304:878–880

    CAS  PubMed  Google Scholar 

  • Clarke HF, Walker SC, Crofts HS, Dalley JW, Robbins TW, Roberts AC (2005) Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J Neurosci 25:532–538

    CAS  PubMed  Google Scholar 

  • Clinton SM, Sucharski IL, Finlay JM (2006) Desipramine attenuates working memory impairments induced by partial loss of catecholamines in the rat medial prefrontal cortex. Psychopharmacology (Berl) 183:404–412

    CAS  Google Scholar 

  • Comings DE, Johnson JP, Gonzalez NS, Huss M, Saucier G, McGue M et al (2000) Association between the adrenergic alpha 2A receptor gene (ADRA2A) and measures of irritability, hostility, impulsivity and memory in normal subjects. Psychiatr Genet 10:39–42

    CAS  PubMed  Google Scholar 

  • Compton DM, Dietrich KL, Smith JS, Davis BK (1995) Spatial and non-spatial learning in the rat following lesions to the nucleus locus coeruleus. Neuroreport 7:177–182

    CAS  PubMed  Google Scholar 

  • Cools R, Roberts AC, Robbins TW (2008) Serotonergic regulation of emotional and behavioural control processes. Trends Cogn Sci 12:31–40

    PubMed  Google Scholar 

  • Cowan N (2008) What are the differences between long-term, short-term, and working memory? Prog Brain Res 169:323–338

    PubMed  Google Scholar 

  • Crews FT, Boettiger CA (2009) Impulsivity, frontal lobes and risk for addiction. Pharmacol Biochem Behav 93:237–247

    CAS  PubMed  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    CAS  PubMed  Google Scholar 

  • Dalley JW, Mar AC, Economidou D, Robbins TW (2008) Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav 90:250–260

    CAS  PubMed  Google Scholar 

  • Decker MW, Gallagher M (1987) Scopolamine-disruption of radial arm maze performance: modification by noradrenergic depletion. Brain Res 417:59–69

    CAS  PubMed  Google Scholar 

  • El-Hai J (2007) The lobotomist: a maverick medical genius and his tragic quest to rid the world of mental illness. Wiley, Hoboken

    Google Scholar 

  • Evans J, Platts H, Lightman S, Nutt D (2000) Impulsiveness and the prolactin response to d-fenfluramine. Psychopharmacology (Berl) 149:147–152

    CAS  Google Scholar 

  • Evenden JL (1998) The pharmacology of impulsive behaviour in rats II: the effects of amphetamine, haloperidol, imipramine, chlordiazepoxide and other drugs on fixed consecutive number schedules (FCN 8 and FCN 32). Psychopharmacology (Berl) 138:283–294

    CAS  Google Scholar 

  • Evenden J (1999) The pharmacology of impulsive behaviour in rats V: the effects of drugs on responding under a discrimination task using unreliable visual stimuli. Psychopharmacol (Berl) 143:111–122

    CAS  Google Scholar 

  • Evers EA, van der Veen FM, Fekkes D, Jolles J (2007) Serotonin and cognitive flexibility: neuroimaging studies into the effect of acute tryptophan depletion in healthy volunteers. Curr Med Chem 14:2989–2995

    CAS  PubMed  Google Scholar 

  • Fairbanks LA, Fontenot MB, Phillips-Conroy JE, Jolly CJ, Kaplan JR, Mann JJ (1999) CSF monoamines, age and impulsivity in wild grivet monkeys (Cercopithecus aethiops aethiops). Brain Behav Evol 53:305–312

    CAS  PubMed  Google Scholar 

  • Fairbanks LA, Melega WP, Jorgensen MJ, Kaplan JR, McGuire MT (2001) Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vervet monkeys. Neuropsychopharmacology 24:370–378

    CAS  PubMed  Google Scholar 

  • Fishbein DH, Lozovsky D, Jaffe JH (1989) Impulsivity, aggression, and neuroendocrine responses to serotonergic stimulation in substance abusers. Biol Psychiatry 25:1049–1066

    CAS  PubMed  Google Scholar 

  • Fletcher PJ, Tampakeras M, Sinyard J, Higgins GA (2007) Opposing effects of 5-HT(2A) and 5-HT(2C) receptor antagonists in the rat and mouse on premature responding in the five-choice serial reaction time test. Psychopharmacology (Berl) 195:223–234

    CAS  Google Scholar 

  • Florin-Lechner SM, Druhan JP, Aston-Jones G, Valentino RJ (1996) Enhanced norepinephrine release in prefrontal cortex with burst stimulation of the locus coeruleus. Brain Res 742:89–97

    CAS  PubMed  Google Scholar 

  • Franowicz JS, Arnsten AF (1999) Treatment with the noradrenergic alpha-2 agonist clonidine, but not diazepam, improves spatial working memory in normal young rhesus monkeys. Neuropsychopharmacology 21:611–621

    CAS  PubMed  Google Scholar 

  • Franowicz JS, Kessler LE, Borja CM, Kobilka BK, Limbird LE, Arnsten AF (2002) Mutation of the alpha2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine. J Neurosci 22:8771–8777

    CAS  PubMed  Google Scholar 

  • Gorlyn M, Keilp JG, Grunebaum MF, Taylor BP, Oquendo MA, Bruder GE et al (2008) Neuropsychological characteristics as predictors of SSRI treatment response in depressed subjects. J Neural Transm 115:1213–1219

    PubMed  Google Scholar 

  • Harlow JM (1868) Recovery from the passage of an iron bar through the head. Publications of the Massachusetts Medical Society 2:327–347

    Google Scholar 

  • Harrison BJ, Olver JS, Norman TR, Burrows GD, Wesnes KA, Nathan PJ (2004) Selective effects of acute serotonin and catecholamine depletion on memory in healthy women. J Psychopharmacol 18:32–40

    CAS  PubMed  Google Scholar 

  • Holmes A, Wellman CL (2009) Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neurosci Biobehav Rev 33:773–783

    PubMed  Google Scholar 

  • Homberg JR, Pattij T, Janssen MC, Ronken E, De Boer SF, Schoffelmeer AN et al (2007) Serotonin transporter deficiency in rats improves inhibitory control but not behavioural flexibility. Eur J Neurosci 26:2066–2073

    PubMed  Google Scholar 

  • Hritcu L, Clicinschi M, Nabeshima T (2007) Brain serotonin depletion impairs short-term memory, but not long-term memory in rats. Physiol Behav 91:652–657

    CAS  PubMed  Google Scholar 

  • Izquierdo A, Newman TK, Higley JD, Murray EA (2007) Genetic modulation of cognitive flexibility and socioemotional behavior in rhesus monkeys. Proc Natl Acad Sci USA 104:14128–14133

    CAS  PubMed  Google Scholar 

  • Jakala P, Sirvio J, Riekkinen P Jr, Riekkinen PJ Sr (1993) Effects of p-chlorophenylalanine and methysergide on the performance of a working memory task. Pharmacol Biochem Behav 44:411–418

    CAS  PubMed  Google Scholar 

  • Jakala P, Riekkinen M, Sirvio J, Koivisto E, Kejonen K, Vanhanen M et al (1999) Guanfacine, but not clonidine, improves planning and working memory performance in humans. Neuropsychopharmacology 20:460–470

    CAS  PubMed  Google Scholar 

  • Jordan S, Kramer GL, Zukas PK, Moeller M, Petty F (1994) In vivo biogenic amine efflux in medial prefrontal cortex with imipramine, fluoxetine, and fluvoxamine. Synapse 18:294–297

    CAS  PubMed  Google Scholar 

  • Khakpour-Taleghani B, Lashgari R, Motamedi F, Naghdi N (2009) Effect of reversible inactivation of locus ceruleus on spatial reference and working memory. Neuroscience 158:1284–1291

    CAS  PubMed  Google Scholar 

  • Koskinen T, Haapalinna A, Sirvio J (2003) Alpha-adrenoceptor-mediated modulation of 5-HT2 receptor agonist induced impulsive responding in a 5-choice serial reaction time task. Pharmacol Toxicol 92:214–225

    CAS  PubMed  Google Scholar 

  • Lapiz MD, Bondi CO, Morilak DA (2007) Chronic treatment with desipramine improves cognitive performance of rats in an attentional set-shifting test. Neuropsychopharmacology 32:1000–1010

    CAS  PubMed  Google Scholar 

  • Lapiz-Bluhm MD, Soto-Pina AE, Hensler JG, Morilak DA (2009) Chronic intermittent cold stress and serotonin depletion induce deficits of reversal learning in an attentional set-shifting test in rats. Psychopharmacology (Berl) 202:329–341

    CAS  Google Scholar 

  • Leckman JF, Hardin MT, Riddle MA, Stevenson J, Ort SI, Cohen DJ (1991) Clonidine treatment of Gilles de la Tourette's syndrome. Arch Gen Psychiatry 48:324–328

    CAS  PubMed  Google Scholar 

  • Lehmann O, Jeltsch H, Lehnardt O, Pain L, Lazarus C, Cassel JC (2000) Combined lesions of cholinergic and serotonergic neurons in the rat brain using 192 IgG-saporin and 5, 7-dihydroxytryptamine: neurochemical and behavioural characterization. Eur J Neurosci 12:67–79

    CAS  PubMed  Google Scholar 

  • Li BM, Mao ZM, Wang M, Mei ZT (1999) Alpha-2 adrenergic modulation of prefrontal cortical neuronal activity related to spatial working memory in monkeys. Neuropsychopharmacology 21:601–610

    CAS  PubMed  Google Scholar 

  • Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, Goodwin FK (1983) Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci 33:2609–2614

    CAS  PubMed  Google Scholar 

  • Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR et al (2006) Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci 26:7870–7874

    CAS  PubMed  Google Scholar 

  • Luciana M, Collins PF, Depue RA (1998) Opposing roles for dopamine and serotonin in the modulation of human spatial working memory functions. Cereb Cortex 8:218–226

    CAS  PubMed  Google Scholar 

  • Luciana M, Burgund ED, Berman M, Hanson KL (2001) Effects of tryptophan loading on verbal, spatial and affective working memory functions in healthy adults. J Psychopharmacol 15:219–230

    CAS  PubMed  Google Scholar 

  • Mao ZM, Arnsten AF, Li BM (1999) Local infusion of an alpha-1 adrenergic agonist into the prefrontal cortex impairs spatial working memory performance in monkeys. Biol Psychiatry 46:1259–1265

    CAS  PubMed  Google Scholar 

  • McLean SL, Woolley ML, Thomas D, Neill JC (2009) Role of 5-HT receptor mechanisms in sub-chronic PCP-induced reversal learning deficits in the rat. Psychopharmacology (Berl) 206:403–414

    CAS  Google Scholar 

  • Milstein JA, Dalley JW, Robbins TW (2008) Methylphenidate-induced impulsivity: pharmacological antagonism by {beta}-adrenoreceptor blockade. J Psychopharmacol Dec 12 [Epub ahead of print]

  • Mozes T, Meiri G, Ben-Amity G, Sabbagh M, Weizman A (2005) Reboxetine as an optional treatment for hyperkinetic conduct disorder: a prospective open-label trial. J Child Adolesc Psychopharmacol 15:259–269

    PubMed  Google Scholar 

  • Muller U, Mottweiler E, Bublak P (2005) Noradrenergic blockade and numeric working memory in humans. J Psychopharmacol 19:21–28

    PubMed  Google Scholar 

  • Murphy FC, Smith KA, Cowen PJ, Robbins TW, Sahakian BJ (2002) The effects of tryptophan depletion on cognitive and affective processing in healthy volunteers. Psychopharmacology (Berl) 163:42–53

    CAS  Google Scholar 

  • Nair V, Mahadevan S (2009) Randomised controlled study-efficacy of clonidine versus carbamazepine in children with ADHD. J Trop Pediatr 55:116–121

    PubMed  Google Scholar 

  • Naudon L, Hotte M, Jay TM (2007) Effects of acute and chronic antidepressant treatments on memory performance: a comparison between paroxetine and imipramine. Psychopharmacology (Berl) 191:353–364

    CAS  Google Scholar 

  • Navarra R, Graf R, Huang Y, Logue S, Comery T, Hughes Z et al (2008) Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5-choice serial reaction time test. Prog Neuropsychopharmacol Biol Psychiatry 32:34–41

    CAS  PubMed  Google Scholar 

  • Oquendo MA, Mann JJ (2000) The biology of impulsivity and suicidality. Psychiatr Clin North Am 23:11–25

    CAS  PubMed  Google Scholar 

  • Page ME, Lucki I (2002) Effects of acute and chronic reboxetine treatment on stress-induced monoamine efflux in the rat frontal cortex. Neuropsychopharmacology 27:237–247

    CAS  PubMed  Google Scholar 

  • Pattij T, Broersen LM, van der Linde J, Groenink L, van der Gugten J, Maes RA et al (2003) Operant learning and differential-reinforcement-of-low-rate 36-s responding in 5-HT1A and 5-HT1B receptor knockout mice. Behav Brain Res 141:137–145

    CAS  PubMed  Google Scholar 

  • Piskulic D, Olver JS, Maruff P, Norman TR (2009) Treatment of cognitive dysfunction in chronic schizophrenia by augmentation of atypical antipsychotics with buspirone, a partial 5-HT(1A) receptor agonist. Hum Psychopharmacol 24:437–446

    CAS  PubMed  Google Scholar 

  • Pityaratstian N (2005) Advances in alternative pharmacotherapy of ADHD. J Med Assoc Thai 88(Suppl 4):S357–S362

    PubMed  Google Scholar 

  • Porter RJ, Lunn BS, O'Brien JT (2003) Effects of acute tryptophan depletion on cognitive function in Alzheimer's disease and in the healthy elderly. Psychol Med 33:41–49

    CAS  PubMed  Google Scholar 

  • Puumala T, Sirvio J (1997) Stimulation and blockade of alpha1 adrenoceptors affect behavioural activity, but not spatial working memory assessed by delayed non-matching to position task in rats. J Psychopharmacol 11:45–51

    CAS  PubMed  Google Scholar 

  • Rammsayer TH, Hennig J, Haag A, Lange N (2001) Effects of noradrenergic activity on temporal information processing in humans. Q J Exp Psychol B 54:247–258

    CAS  PubMed  Google Scholar 

  • Ramos BP, Arnsten AF (2007) Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 113:523–536

    CAS  PubMed  Google Scholar 

  • Ramos BP, Colgan L, Nou E, Ovadia S, Wilson SR, Arnsten AF (2005) The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys. Biol Psychiatry 58:894–900

    CAS  PubMed  Google Scholar 

  • Ramos BP, Stark D, Verduzco L, van Dyck CH, Arnsten AF (2006) Alpha2A-adrenoceptor stimulation improves prefrontal cortical regulation of behavior through inhibition of cAMP signaling in aging animals. Learn Mem 13:770–776

    CAS  PubMed  Google Scholar 

  • Ramos BP, Colgan LA, Nou E, Arnsten AF (2008) Beta2 adrenergic agonist, clenbuterol, enhances working memory performance in aging animals. Neurobiol Aging 29:1060–1069

    CAS  PubMed  Google Scholar 

  • Richardson JS, Keegan DL, Bowen RC, Blackshaw SL, Cebrian-Perez S, Dayal N et al (1994) Verbal learning by major depressive disorder patients during treatment with fluoxetine or amitriptyline. Int Clin Psychopharmacol 9:35–40

    CAS  PubMed  Google Scholar 

  • Richter-Levin G, Segal M (1989) Spatial performance is severely impaired in rats with combined reduction of serotonergic and cholinergic transmission. Brain Res 477:404–407

    CAS  PubMed  Google Scholar 

  • Ridley RM, Haystead TA, Baker HF, Crow TJ (1981) A new approach to the role of noradrenaline in learning: problem-solving in the marmoset after alpha-noradrenergic receptor blockade. Pharmacol Biochem Behav 14:849–855

    CAS  PubMed  Google Scholar 

  • Rilling JK, Insel TR (1999) The primate neocortex in comparative perspective using magnetic resonance imaging. J Hum Evol 37:191–223

    CAS  PubMed  Google Scholar 

  • Robbins TW, Roberts AC (2007) Differential regulation of fronto-executive function by the monoamines and acetylcholine. Cereb Cortex 17(Suppl 1):i151–i160

    PubMed  Google Scholar 

  • Robinson ES, Dalley JW, Theobald DE, Glennon JC, Pezze MA, Murphy ER, Robbins TW (2008a) Opposing roles for 5-HT2A and 5-HT2C receptors in the nucleus accumbens on inhibitory response control in the 5-choice serial reaction time task. Neuropsychopharmacology 33:2398–2406

    CAS  PubMed  Google Scholar 

  • Robinson ES, Eagle DM, Mar AC, Bari A, Banerjee G, Jiang X et al (2008b) Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 33:1028–1037

    CAS  PubMed  Google Scholar 

  • Roggenbach J, Muller-Oerlinghausen B, Franke L (2002) Suicidality, impulsivity and aggression—is there a link to 5HIAA concentration in the cerebrospinal fluid? Psychiatry Res 113:193–206

    CAS  PubMed  Google Scholar 

  • Rossetti ZL, Carboni S (2005) Noradrenaline and dopamine elevations in the rat prefrontal cortex in spatial working memory. J Neurosci 25:2322–2329

    CAS  PubMed  Google Scholar 

  • Russell VA (2002) Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder—the spontaneously hypertensive rat. Behav Brain Res 130:191–196

    CAS  PubMed  Google Scholar 

  • Rutz S, Riegert C, Rothmaier AK, Buhot MC, Cassel JC, Jackisch R (2006) Presynaptic serotonergic modulation of 5-HT and acetylcholine release in the hippocampus and the cortex of 5-HT1B-receptor knockout mice. Brain Res Bull 70:81–93

    CAS  PubMed  Google Scholar 

  • Saber AJ, Cain DP (2003) Combined beta-adrenergic and cholinergic antagonism produces behavioral and cognitive impairments in the water maze: implications for Alzheimer disease and pharmacotherapy with beta-adrenergic antagonists. Neuropsychopharmacology 28:1247–1256

    CAS  PubMed  Google Scholar 

  • Sanabria F, Acosta JI, Killeen PR, Neisewander JL, Bizo LA (2008) Modeling the effects of fluoxetine on food-reinforced behavior. Behav Pharmacol 19:61–70

    CAS  PubMed  Google Scholar 

  • Scearce-Levie K, Chen JP, Gardner E, Hen R (1999) 5-HT receptor knockout mice: pharmacological tools or models of psychiatric disorders. Ann N Y Acad Sci 868:701–715

    CAS  PubMed  Google Scholar 

  • Semendeferi K, Armstrong E, Schleicher A, Zilles K, Van Hoesen GW (2001) Prefrontal cortex in humans and apes: a comparative study of area 10. Am J Phys Anthropol 114:224–241

    CAS  PubMed  Google Scholar 

  • Seu E, Lang A, Rivera RJ, Jentsch JD (2009) Inhibition of the norepinephrine transporter improves behavioral flexibility in rats and monkeys. Psychopharmacology (Berl) 202:505–519

    CAS  Google Scholar 

  • Silver JA, Hughes JD, Bornstein RA, Beversdorf DQ (2004) Effect of anxiolytics on cognitive flexibility in problem solving. Cogn Behav Neurol 17:93–97

    PubMed  Google Scholar 

  • Spreux-Varoquaux O, Alvarez JC, Berlin I, Batista G, Despierre PG, Gilton A et al (2001) Differential abnormalities in plasma 5-HIAA and platelet serotonin concentrations in violent suicide attempters: relationships with impulsivity and depression. Life Sci 69:647–657

    CAS  PubMed  Google Scholar 

  • Steere JC, Arnsten AF (1997) The alpha-2A noradrenergic receptor agonist guanfacine improves visual object discrimination reversal performance in aged rhesus monkeys. Behav Neurosci 111:883–891

    CAS  PubMed  Google Scholar 

  • Sumiyoshi T, Park S, Jayathilake K, Roy A, Ertugrul A, Meltzer HY (2007) Effect of buspirone, a serotonin1A partial agonist, on cognitive function in schizophrenia: a randomized, double-blind, placebo-controlled study. Schizophr Res 95:158–168

    PubMed  Google Scholar 

  • Swann AC, Birnbaum D, Jagar AA, Dougherty DM, Moeller FG (2005) Acute yohimbine increases laboratory-measured impulsivity in normal subjects. Biol Psychiatry 57:1209–1211

    CAS  PubMed  Google Scholar 

  • Tait DS, Brown VJ, Farovik A, Theobald DE, Dalley JW, Robbins TW (2007) Lesions of the dorsal noradrenergic bundle impair attentional set-shifting in the rat. Eur J Neurosci 25:3719–3724

    PubMed  Google Scholar 

  • Tanda G, Carboni E, Frau R, Di Chiara G (1994) Increase of extracellular dopamine in the prefrontal cortex: a trait of drugs with antidepressant potential? Psychopharmacology (Berl) 115:285–288

    CAS  Google Scholar 

  • Tourette's Syndrome Study Group (2002) Treatment of ADHD in children with tics: a randomized controlled trial. Neurology 58:527–536

    Google Scholar 

  • Vallender EJ, Lynch L, Novak MA, Miller GM (2009) Polymorphisms in the 3′ UTR of the serotonin transporter are associated with cognitive flexibility in rhesus macaques. Am J Med Genet B Neuropsychiatr Genet 150B:467–475

    CAS  PubMed  Google Scholar 

  • van der Plasse G, Feenstra MG (2008) Serial reversal learning and acute tryptophan depletion. Behav Brain Res 186:23–31

    PubMed  Google Scholar 

  • van Gaalen M, Kawahara H, Kawahara Y, Westerink BH (1997) The locus coeruleus noradrenergic system in the rat brain studied by dual-probe microdialysis. Brain Res 763:56–62

    PubMed  Google Scholar 

  • van Gaalen MM, van Koten R, Schoffelmeer AN, Vanderschuren LJ (2006) Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biol Psychiatry 60:66–73

    PubMed  Google Scholar 

  • Verrico CD, Lynch L, Fahey MA, Fryer AK, Miller GM, Madras BK (2008) MDMA-induced impairment in primates: antagonism by a selective norepinephrine or serotonin, but not by a dopamine/norepinephrine transport inhibitor. J Psychopharmacol 22:187–202

    CAS  PubMed  Google Scholar 

  • Virkkunen M, Goldman D, Nielsen DA, Linnoila M (1995) Low brain serotonin turnover rate (low CSF 5-HIAA) and impulsive violence. J Psychiatry Neurosci 20:271–275

    CAS  PubMed  Google Scholar 

  • Wada T, Fukuda N (1992) Effect of a new anxiolytic, DN-2327, on learning and memory in rats. Pharmacol Biochem Behav 41:573–579

    CAS  PubMed  Google Scholar 

  • Wang M, Ramos BP, Paspalas CD, Shu Y, Simen A, Duque A, Vijayraghavan S, Brennan A, Dudley A, Nou E, Mazer JA, McCormick DA, Arnsten AF (2007) Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129:397–410

    CAS  PubMed  Google Scholar 

  • Wilens TE, Biederman J, Prince J, Spencer TJ, Faraone SV, Warburton R et al (1996) Six-week, double-blind, placebo-controlled study of desipramine for adult attention deficit hyperactivity disorder. Am J Psychiatry 153:1147–1153

    CAS  PubMed  Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Glennon JC, Robbins TW (2004) 5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology (Berl) 176:376–385

    CAS  Google Scholar 

  • Wolff MC, Leander JD (2002) Selective serotonin reuptake inhibitors decrease impulsive behavior as measured by an adjusting delay procedure in the pigeon. Neuropsychopharmacology 27:421–429

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Fitzgerald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzgerald, P.J. A neurochemical yin and yang: does serotonin activate and norepinephrine deactivate the prefrontal cortex?. Psychopharmacology 213, 171–182 (2011). https://doi.org/10.1007/s00213-010-1856-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1856-1

Keywords

Navigation