Skip to main content

Advertisement

Log in

Zolmitriptan and human aggression: interaction with alcohol

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The serotonin 1B/D (5-HT1B/D) receptor has shown potential as a target for decreasing aggression. The 5-HT1B/D agonist zolmitriptan's ability to reduce aggressive behavior in humans and its interaction with the well-known aggression-enhancing drug alcohol were examined.

Objectives

Our objective was to investigate zolmitriptan's potential to modify human aggression in a laboratory paradigm across a range of alcohol doses. Alcohol has been consistently associated with aggression and violence, thus we hoped to expand current understanding of alcohol's role in aggressive behavior via manipulation of the serotonin (5-HT) system.

Methods

Eleven social drinkers, seven male, were recruited to participate in a research study lasting 3–4 weeks. Aggression was measured using the point-subtraction aggression paradigm (PSAP), a laboratory model widely used in human aggression studies. Subjects were administered 5-mg zolmitriptan and placebo capsules along with alcohol doses of 0.0, 0.4 and 0.8 g/kg in a within-subject, counterbalanced dosing design. Data were analyzed as the ratio of aggressive/monetary-earning responses, to account for possible changes in overall motor function due to alcohol.

Results

There was a significant alcohol by zolmitriptan interaction on the aggressive/monetary response ratio. Specifically, compared to placebo, zolmitriptan decreased the aggressive/monetary ratio at the 0.4- and 0.8-g/kg alcohol doses.

Conclusions

A 5-mg dose of zolmitriptan effectively reduced alcohol-related aggression in an acute dosing protocol, demonstrating an interaction of 5-HT and alcohol in human aggressive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akash K, Balarama KS, Paulose CS (2008) Enhanced 5-HT(2A) receptor status in the hypothalamus and corpus striatum of ethanol-treated rats. Cell Mol Neurobiol 28(7):1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Allen TJ, Moeller FG, Rhoades HM, Cherek DR (1997) Subjects with a history of drug dependence are more aggressive than subjects with no drug use history. Drug Alcohol Depend 46:95–103

    Article  CAS  PubMed  Google Scholar 

  • Ballenger JC, Goodwin FK, Major LF, Brown GL (1979) Alcohol and central serotonin metabolism in man. Arch Gen Psychiatry 36:224–227

    CAS  PubMed  Google Scholar 

  • Baron RA, Richardson DR (1994) Human aggression, 2nd edn. Plenum Press, New York City

    Google Scholar 

  • Bergstrom M, Yates R, Wall A, Kagedal M, Syvanen S, Langstrom B (2006) Blood–brain barrier penetration of zolmitriptan—modelling of positron emission tomography data. J Pharmacokinet Pharmacodyn 33:75–91

    Article  PubMed  Google Scholar 

  • Berman ME, McCloskey MS, Fanning JR, Schumacher JA, Coccaro E (2009) Serotonin augmentation reduces response to attack in aggressive individuals. Psychol Sci 20:714–720

    Article  PubMed  Google Scholar 

  • Bond AJ, Wingrove J, Critchlow DG (2001) Tryptophan depletion increases aggression in women during the premenstrual phase. Psychopharmacology (Berl) 156:477–480

    Article  CAS  Google Scholar 

  • Boschert UF, Amara DF, Segu LF, Hen R (1994) The mouse 5-hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience 58:167–182

    Article  CAS  PubMed  Google Scholar 

  • Brown GL, Goodwin FK, Ballenger JC, Goyer PF, Major LF (1979) Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res 1:131–139

    Article  CAS  PubMed  Google Scholar 

  • Bushman BJ (1997) Effects of alcohol on human aggression. Validity of proposed explanations. Recent Dev Alcohol 13:227–243

    Article  CAS  PubMed  Google Scholar 

  • Cappadocia MC, Desrocher M, Pepler D, Schroeder JH (2009) Contextualizing the neurobiology of conduct disorder in an emotion dysregulation framework. Clin Psychol Rev 29:506–518

    Article  PubMed  Google Scholar 

  • Carre JM, Putnam SK, McCormick CM (2009) Testosterone responses to competition predict future aggressive behaviour at a cost to reward in men. Psychoneuroendocrinology 34:561–570

    Article  CAS  PubMed  Google Scholar 

  • Centenaro LA, Vieira K, Zimmermann N, Miczek KA, Lucion AB, De Almeida RM (2008) Social instigation and aggressive behavior in mice: role of 5-HT1A and 5-HT1B receptors in the prefrontal cortex. Psychopharmacology (Berl) 201:237–248

    Article  CAS  Google Scholar 

  • Cherek DR (1992) Point-subtraction aggression paradigm. University of Texas, Houston

    Google Scholar 

  • Cherek DR, Lane SD (1999) Effects of d,l-fenfluramine on aggressive and impulsive responding in adult males with a history of conduct disorder. Psychopharmacology (Berl) 146:473–481

    Article  CAS  Google Scholar 

  • Cherek DR, Lane SD (2001) Acute effects of d-fenfluramine on simultaneous measures of aggressive escape and impulsive responses of adult males with and without a history of conduct disorder. Psychopharmacology (Berl) 157:221–227

    Article  CAS  Google Scholar 

  • Cherek DR, Steinberg JL, Manno BR (1985) Effects of alcohol on human aggressive behavior. J Stud Alcohol 46:321–328

    CAS  PubMed  Google Scholar 

  • Cherek DR, Moeller FG, Schnapp W, Dougherty DM (1997) Studies of violent and nonviolent male parolees: I. Laboratory and psychometric measurements of aggression. Biol Psychiatry 41:514–522

    Article  CAS  PubMed  Google Scholar 

  • Cherek DR, Moeller FG, Khan-Dawood F, Swann A, Lane SD (1999) Prolactin response to buspirone was reduced in violent compared to nonviolent parolees. Psychopharmacology (Berl) 142:144–148

    Article  CAS  Google Scholar 

  • Cherek DR, Lane SD, Pietras CJ, Steinberg JL (2002) Effects of chronic paroxetine administration on measures of aggressive and impulsive responses of adult males with a history of conduct disorder. Psychopharmacology (Berl) 159:266–274

    Article  CAS  Google Scholar 

  • de Almeida RM, Nikulina EM, Faccidomo S, Fish EW, Miczek KA (2001) Zolmitriptan—a 5-HT1B/D agonist, alcohol, and aggression in mice. Psychopharmacology (Berl) 157:131–141

    Article  Google Scholar 

  • de Almeida RM, Ferrari PF, Parmigiani S, Miczek KA (2005) Escalated aggressive behavior: dopamine, serotonin and GABA. Eur J Pharmacol 526:51–64

    Article  PubMed  Google Scholar 

  • de Almeida RM, Rosa MM, Santos DM, Saft DM, Benini Q, Miczek KA (2006) 5-HT(1B) receptors, ventral orbitofrontal cortex, and aggressive behavior in mice. Psychopharmacology 185:441–450

    Article  CAS  PubMed  Google Scholar 

  • Dougherty DM, Cherek DR, Bennett RH (1996) The effects of alcohol on the aggressive responding of women. J Stud Alcohol 57:178–186

    CAS  PubMed  Google Scholar 

  • Dougherty DM, Moeller FG, Bjork JM, Marsh DM (1999) Plasma l-tryptophan depletion and aggression. Adv Exp Med Biol 467:57–65

    CAS  PubMed  Google Scholar 

  • Faccidomo S, Bannai M, Miczek KA (2008) Escalated aggression after alcohol drinking in male mice: dorsal raphé and prefrontal cortex serotonin and 5-HT1B receptors. Neuropsychopharm 33:2888–2899

    Article  CAS  Google Scholar 

  • Fillmore MT (2003) Drug abuse as a problem of impaired control: current approaches and findings. Behav Cogn Neurosci Rev 2:179–197

    Article  PubMed  Google Scholar 

  • First M, Spitzer R, Gibbon M, Williams J (1996) Structured clinical interview for DSM-IV axis-I disorders, patient edition. New York State Psychiatric Institute, New York

    Google Scholar 

  • Fish EW, Faccidomo S, Miczek KA (1999) Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT(1B) receptor agonist CP-94, 253. Psychopharmacology (Berl) 146:391–399

    Article  CAS  Google Scholar 

  • Gerra G, Zaimovic A, Moi G, Bussandri M, Bubici C, Moroni M, Raggi MA, Brambilla F (2004) Aggressive responding in abstinent heroin addicts: neuroendocrine and personality correlates. Prog Neuropsychopharmacol Biol Psychiatry 28:129–139

    Article  CAS  PubMed  Google Scholar 

  • Gerra G, Zaimovic A, Raggi MA, Moi G, Branchi B, Moroni M, Brambilla F (2007) Experimentally induced aggressiveness in heroin-dependent patients treated with buprenorphine: comparison of patients receiving methadone and healthy subjects. Psychiatry Res 149:201–213

    Article  CAS  PubMed  Google Scholar 

  • Giancola PR, Saucier DA, Ussler-Burkhardt NL (2003) The effects of affective, behavioral, and cognitive components of trait anger on the alcohol-aggression relation. Alcohol Clin Exp Res 27:1944–1954

    Article  PubMed  Google Scholar 

  • Giancola PR, Godlaski AJ, Parrott DJ (2005) “So I can't blame the booze?”: dispositional aggressivity negates the moderating effects of expectancies on alcohol-related aggression. J Stud Alcohol 66:815–824

    PubMed  Google Scholar 

  • Giancola PR, Levinson CA, Corman MD, Godlaski AJ, Morris DH, Phillips JP, Holt JC (2009) Men and women, alcohol and aggression. Exp Clin Psychopharmacol 17:154–164

    Article  PubMed  Google Scholar 

  • Golomb BA, Cortez-Perez M, Jaworski BA, Mednick S, Dimsdale J (2007) Point subtraction aggression paradigm: validity of a brief schedule of use. Violence Vict 22:95–103

    Article  PubMed  Google Scholar 

  • Greenfeld LA, Henneberg MA (2001) Victim and offender self-reports of alcohol involvement in crime. Alcohol Res Health 25:20–31

    CAS  PubMed  Google Scholar 

  • Haertzen CA (1966) Development of scales based on patterns of drug effects, using the addiction Research Center Inventory (ARCI). Psychol Rep 18:163–194

    CAS  PubMed  Google Scholar 

  • Hanchar HJ, Wallner MF, Olsen RW (2004) Alcohol effects on gamma-aminobutyric acid type A receptors: are extrasynaptic receptors the answer? Life Sci 76:1–8

    Article  CAS  PubMed  Google Scholar 

  • Harris RA, Trudell J, Mihic SJ (2008) Ethanol's molecular targets. Sci Signal 1:re7

    Article  PubMed  Google Scholar 

  • Hindmarch IF, Kerr JS, Sherwood N (1991) The effects of alcohol and other drugs on psychomotor performance and cognitive function. Alcohol Alcohol 26:71–79

    CAS  PubMed  Google Scholar 

  • Hoaken PN, Giancola PR, Pihl RO (1998) Executive cognitive functions as mediators of alcohol-related aggression. Alcohol Alcohol 33:47–54

    CAS  PubMed  Google Scholar 

  • Huang YY, Grailhe RF, Arango VF, Hen RF, Mann JJ (1999) Relationship of psychopathology to the human serotonin1B genotype and receptor binding kinetics in postmortem brain tissue. Neuropsychopharmacology 21:238–246

    Article  CAS  PubMed  Google Scholar 

  • Ito TA, Miller N, Pollock VE (1996) Alcohol and aggression: a meta-analysis on the moderating effects of inhibitory cues, triggering events, and self-focused attention. Psychol Bull 120:60–82

    Article  CAS  PubMed  Google Scholar 

  • Lane SD, Cherek D, Pietras C, Tcheremissine O (2004) Alcohol effects on human risk taking. Psychopharmacology (Berl) 172:68–77

    Article  CAS  Google Scholar 

  • Lappalainen JF, Long JC, Eggert MF, Ozaki NF, Robin RW, Brown GL, Naukkarinen HF, Virkkunen MF, Linnoila MF, Goldman D (1998) Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch Gen Psychiatry 55:989–994

    Article  CAS  PubMed  Google Scholar 

  • Martin SE, Bryant K (2001) Gender differences in the association of alcohol intoxication and illicit drug abuse among persons arrested for violent and property offenses. J Subst Abuse 13:563–581

    Article  CAS  PubMed  Google Scholar 

  • Martin WR, Sloan JW, Sapira JD, Jasinski DR (1971) Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clin Pharmacol Ther 12:245–258

    CAS  PubMed  Google Scholar 

  • McCloskey MS, Berman ME (2003) Laboratory measures: the Taylor aggression paradigm. In: Coccaro EF (ed) Aggression: psychiatric assessment and treatment. Dekker, New York, pp 195–213

    Google Scholar 

  • McCloskey MS, Berman ME, Echevarria DJ, Coccaro E (2009a) Effects of acute alcohol intoxication and paroxetine on aggression in men. Alcohol Clin Exp Res 33:581–590

    Article  CAS  PubMed  Google Scholar 

  • McCloskey MS, New AS, Siever LJ, Goodman M, Koenigsberg HW, Flory JD, Coccaro EF (2009b) Evaluation of behavioral impulsivity and aggression tasks as endophenotypes for borderline personality disorder. J Psychiatric Research 43:1036–1048

    Article  Google Scholar 

  • Miczek KA, Fish EW, De Bold JF, De Almeida RM (2002) Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology (Berl) 163:434–458

    Article  CAS  Google Scholar 

  • Miller CA, Parrott DJ, Giancola PR (2009) Agreeableness and alcohol-related aggression: the mediating effect of trait aggressivity. Exp Clin Psychopharmacol 17:445–455

    Article  CAS  PubMed  Google Scholar 

  • Moeller FG, Dougherty DM, Swann AC, Collins DF, Davis CM, Cherek DR (1996) Tryptophan depletion and aggressive responding in healthy males. Psychopharmacology (Berl) 126:97–103

    Article  CAS  Google Scholar 

  • Moeller FG, Dougherty DM, FAU LSD, Steinberg JL, Cherek DR (1998) Antisocial personality disorder and alcohol-induced aggression. Alcohol Clin Exp Res 22:1898–1902

    Article  CAS  PubMed  Google Scholar 

  • Moeller FG, Barratt ES, Dougherty DM, Schmitz JM, Swann AC (2001) Psychiatric aspects of impulsivity. Am J Psychiatry 158:1783–1793

    Article  CAS  PubMed  Google Scholar 

  • Moller SE, Mortensen EL, Breum L, Alling C, Larsen OG, Boge-Rasmussen T, Jensen C, Bennicke K (1996) Aggression and personality: association with amino acids and monoamine metabolites. Psychol Med 26:323–331

    Article  CAS  PubMed  Google Scholar 

  • Moore TM, Scarpa A, Raine A (2002) A meta-analysis of serotonin metabolite 5-HIAA and antisocial behavior. Aggr Behav 28:299–316

    Google Scholar 

  • Moss HB, Hardie TL, Dahl JP, Berrettini W, Xu K (2007) Diplotypes of the human serotonin 1B receptor promoter predict growth hormone responses to sumatriptan in abstinent alcohol-dependent men. Biol Psychiatry 61:974–978

    Article  CAS  PubMed  Google Scholar 

  • New AS, Buchsbaum MS, Hazlett EA, Goodman M, Koenigsberg HW, Lo J, Iskander L, Newmark R, Brand J, O'Flynn K, Siever LJ (2004) Fluoxetine increases relative metabolic rate in prefrontal cortex in impulsive aggression. Psychopharmacology (Berl) 176:451–458

    Article  CAS  Google Scholar 

  • Olivier BF, van Oorschot R (2005) 5-HT1B receptors and aggression: a review. Eur J Pharmacol 526:207–217

    Article  CAS  PubMed  Google Scholar 

  • Parrott DJ, Giacola PR (2007) Addressing “The criterion problem” in the assessment of aggressive behavior: development of a new taxonomic system. Aggress Violent Behav 12:280–299

    Article  Google Scholar 

  • Peterlin BL, Rapoport AM (2007) Clinical pharmacology of the serotonin receptor agonist, zolmitriptan. Expert Opin Drug Metab Toxicol 3:899–911

    Article  CAS  PubMed  Google Scholar 

  • Pihl RO, Young SN, Harden P, Plotnick S, Chamberlain B, Ervin FR (1995) Acute effect of altered tryptophan levels and alcohol on aggression in normal human males. Psychopharmacology (Berl) 119:353–360

    Article  CAS  Google Scholar 

  • Rush CR, Griffiths RR (1997) Acute participant-rated and behavioral effects of alprazolam and buspirone, alone and in combination with ethanol, in normal volunteers. Exp Clin Psychopharmacol 5:28–38

    Article  CAS  PubMed  Google Scholar 

  • Sellers EM, Higgins GA, Sobell MB (1992) 5-HT and alcohol abuse. Trends Pharmacol Sci 13:69–75

    Article  CAS  PubMed  Google Scholar 

  • Siever LJ (2008) Neurobiology of aggression and violence. Am J Psychiatry 165:429–442

    Article  PubMed  Google Scholar 

  • Silva SA, Marques FB, Fontes Ribeiro CA (2007) Characterization of the human basilar artery contractile response to 5-HT and triptans. Fundam Clin Pharmacol 21:265–272

    Article  CAS  PubMed  Google Scholar 

  • Taylor SP, Gammon CB, Capasso DR (1976) Aggression as a function of the interaction of alcohol and threat. J Pers Soc Psychol 34:938–941

    Article  CAS  PubMed  Google Scholar 

  • Uemura N, Onishi T, Mitaniyama A, Kaneko T, Ninomiya K, Nakamura K, Tateno M (2005) Bioequivalence and rapid absorption of zolmitriptan nasal spray compared with oral tablets in healthy Japanese subjects. Clin Drug Investig 25:199–208

    Article  CAS  PubMed  Google Scholar 

  • Vermeersch H, T'Sjoen G, Kaufman JM, Vincke J (2008) Estradiol, testosterone, differential association and aggressive and non-aggressive risk-taking in adolescent girls. Psychoneuroendocrinology 33:897–908

    Article  CAS  PubMed  Google Scholar 

  • Westergaard GC, Suomi SJ, Higley JD, Mehlman PT (1999) CSF 5-HIAA and aggression in female macaque monkeys: species and interindividual differences. Psychopharmacology (Berl) 146:440–446

    Article  CAS  Google Scholar 

  • Zawertailo LA, Busto UE, Kaplan HL, Greenblatt DJ, Sellers E (2003) Comparative abuse liability and pharmacological effects of meprobamate, triazolam, and butabarbital. J Clin Psychopharmacol 23:269–280

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the National Institutes of Health (R01 DA 003166 to SDL). We thank Veronica Aldana, Jennifer Edwards, Margarita de Vega, Irshad Prasla, Laura Madden-Fuentes and Alice Chi for their technical contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott D. Lane.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table

Per session means (±SEM) for physiolgical measures (blood pressure, heart rate and breath-alcohol concentration) and measures of subjective effects (PCAG scale or the ARCI). See text for details of each measure. (PDF 29.4kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gowin, J.L., Swann, A.C., Moeller, F.G. et al. Zolmitriptan and human aggression: interaction with alcohol. Psychopharmacology 210, 521–531 (2010). https://doi.org/10.1007/s00213-010-1851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1851-6

Keywords

Navigation