Skip to main content

Effects of acute tryptophan depletion on neural processing of facial expressions of emotion in humans

Abstract

Introduction

Acute tryptophan depletion (ATD) temporarily lowers brain serotonin (5-HT) synthesis, and behavioral studies have shown that this alters the processing of facial expressions of emotion.

Materials and methods

The neural basis for these alterations is not known. Therefore, we employed ATD and event-related functional magnetic resonance imaging (fMRI) to examine neural responses during incidental processing of fearful, happy, sad, and disgusted facial expressions. Fourteen healthy male controls (age, 28 ± 10) were scanned under both placebo (SHAM) and depletion (ATD) conditions.

Results and discussion

We predicted that ATD would be associated with changes in neural activity within facial emotion-processing networks. We found that serotonergic modulation did not affect performance on the fMRI tasks, but was associated with widespread effects on neural response to components of face processing networks for fearful, disgusted, and happy but not sad expressions across differing intensities.

Conclusion

Hence, the 5-HT system affects brain function (in ‘limbic’ and ‘face processing’ regions) during incidental processing of emotional facial expressions; but this varies with emotion type and intensities.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Attenburrow MJ, Williams C, Odontiadis J, Reed A, Powell J, Cowen PJ, Harmer CJ (2003) Acute administration of nutritionally sourced tryptophan increases fear recognition. Psychopharmacology 169:104–107

    Article  CAS  PubMed  Google Scholar 

  • Baumgarten HG, Grozdanovic Z (1995) Psychopharmacology of Central Serotonergic Systems. Pharmacopsychiatry 28:73–79

    Article  PubMed  Google Scholar 

  • Beck AT, Steer RA (1993) Manual for the Beck Depression Inventory. Psychological Corporation, San Antonio

    Google Scholar 

  • Beck AT, Brown G, Epstein N, Steer RA (1988) An inventory for measuring clinical anxiety—psychometric properties. J Consult Clin Psychol 56:893–897

    Article  CAS  PubMed  Google Scholar 

  • Blair RJR (2003) Facial expressions, their communicatory functions and neuro-cognitive substrates. Philos Trans R Soc B Biol Sci 358:561–572

    Article  CAS  Google Scholar 

  • Bond A, Lader M (1974) Use of analog scales in rating subjective feelings. Br J Med Psychol 47:211–218

    Google Scholar 

  • Bond A, Lader M (1986) A method to elicit aggressive feelings and behaviour via provocation. Biol Psychol 22:69–79

    Article  CAS  PubMed  Google Scholar 

  • Booij L, Van der Does AJW, Haffmans PMJ, Riedel WJ, Fekkes D, Blom MJB (2005) The effects of high-dose and low-dose tryptophan depletion on mood and cognitive functions of remitted depressed patients. J Psychopharmacol 19:267–275

    Article  CAS  PubMed  Google Scholar 

  • Brammer MJ, Bullmore ET, Simmons A, Williams SCR, Grasby PM, Howard RJ, Woodruff PWR, Rabe-Hesketh S (1997) Generic brain activation mapping in functional magnetic resonance imaging: a nonparametric approach. Magn Reson Imaging 15:763–770

    Article  CAS  PubMed  Google Scholar 

  • Browning M, Reid C, Cowen PJ, Goodwin GM, Harmer CJ (2007) A single dose of citalopram increases fear recognition in healthy subjects. J Psychopharmacol 21:684–690

    Article  CAS  PubMed  Google Scholar 

  • Bullmore ET, Brammer MJ, Rabe-Hesketh S, Curtis VA, Morris RG, Williams SCR, Sharma T, McGuire PK (1999a) Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Hum Brain Mapp 7:38–48

    Article  CAS  PubMed  Google Scholar 

  • Bullmore ET, Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh SAR-HS, Taylor EATE, Brammer MJABMJ (1999b) Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imag 18:32–42

    Article  CAS  Google Scholar 

  • Bullmore E, Long C, Suckling J, Fadili J, Calvert G, Zelaya F, Carpenter TA, Brammer M (2001) Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum Brain Mapp 12:61–78

    Article  CAS  PubMed  Google Scholar 

  • Buss AH, Perry M (1992) The aggression questionnaire. J Pers Soc Psychol 63:452–459

    Article  CAS  PubMed  Google Scholar 

  • Chauvel V, Multon S, Shoennen J (2009) Gender-dependant effect of acute dietary tryptophan depletion on sensitivity to cortical spearding depression in rats 14th Congress of the International-Headache-Society. Wiley-Blackwell, Philadelphia, pp 117–117

    Google Scholar 

  • Cleare AJ, Bond AJ (1995) The effect of tryptophan depletion and enhancement on subjective and behavioural aggression in normal male subjects. Psychopharmacology 118:72–81

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Calder AJ, Lawrence AD, Clark L, Bullmore E, Robbins TW (2005) Individual differences in threat sensitivity predict serotonergic modulation of amygdala response to fearful faces. Psychopharmacology V180:670–679

    Article  Google Scholar 

  • Darwin C (1872/1965) The Expression of the Emotions in Man and Animals. University of Chicago Press, Chicago

    Google Scholar 

  • Deeley Q, Daly EM, Surguladze S, Page L, Toal F, Robertson D, Curran S, Giampietro V, Seal M, Brammer MJ, Andrew C, Murphy K, Phillips ML, Murphy DGM (2007) An event related functional magnetic resonance imaging study of facial emotion processing in Asperger syndrome. Biol Psychiatry 62:207–217

    Article  PubMed  Google Scholar 

  • Delgado PL, Charney DS, Price LH, Aghajanian GK, Landis H, Heninger GR (1990) Serotonin function and the mechanism of antidepressant action. Reversal of antidepressant-induced remission by rapid depletion of plasma tryptophan. Arch Gen Psychiatry 47:411–418

    CAS  PubMed  Google Scholar 

  • Duchesne A, Dufresne MM, Sullivan RM (2009) Sex differences in corticolimbic dopamine and serotonin systems in the rat and the effect of postnatal handling. Prog Neuropsychopharmacol Biol Psychiatry 33:251–261

    Article  CAS  PubMed  Google Scholar 

  • Friman O, Borga M, Lundberg P, Knutsson H (2003) Adaptive analysis of fMRI data. NeuroImage 19:837–845

    Article  PubMed  Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ (1993) Functional connectivity—the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13:5–14

    CAS  PubMed  Google Scholar 

  • Fusar-Poli P, Allen P, Cortesi M (2007a) Can acute tryptophan depletion modulate brain function in absence of behaviourat effects? Med Hypotheses 68:722–722

    Article  CAS  PubMed  Google Scholar 

  • Fusar-Poli P, Allen P, Lee F, Surguladze S, Tunstall N, Fu C, Brammer M, Cleare A, McGuire P (2007b) Modulation of neural response to happy and sad faces by acute tryptophan depletion. Psychopharmacology 193:31–44

    Article  CAS  PubMed  Google Scholar 

  • Harmer CJ, Bhagwagar Z, Perrett DI, Vollm BA, Cowen PJ, Goodwin GM (2003a) Acute SSRI administration affects the processing of social cues in healthy volunteers. Neuropsychopharmacology 28:148–152

    Article  CAS  PubMed  Google Scholar 

  • Harmer CJ, Rogers RD, Tunbridge E, Cowen PJ, Goodwin GM (2003b) Tryptophan depletion decreases the recognition of fear in female volunteers. Psychopharmacology 167:411–417

    CAS  PubMed  Google Scholar 

  • Haxby JV, Hoffman EA, Gobbini MI (2002) Human neural systems for face recognition and social communication. Biol Psychiatry 51:59–67

    Article  PubMed  Google Scholar 

  • Hayward G, Goodwin GM, Cowen PJ, Harmer CJ (2005) Low-dose tryptophan depletion in recovered depressed patients induces changes in cognitive processing without depressive symptoms. Biol Psychiatry 57:517–524

    Article  CAS  PubMed  Google Scholar 

  • Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    CAS  PubMed  Google Scholar 

  • Keating J, Dratcu L, Lader M, Sherwood RA (1993) Measurement of plasma serotonin by high-performance liquid chromatography with electrochemical detection as an index of the in vivo activity of fluvoxamine. J Chromatogr Biomed Appl 615:237–242

    Article  CAS  Google Scholar 

  • Klaassen T, Riedel WJ, van Someren A, Deutz NEP, Honig A, van Praag HM (1999) Mood effects of 24-hour tryptophan depletion in healthy first-degree relatives of patients with affective disorders. Biol Psychiatry 46:489–497

    Article  CAS  PubMed  Google Scholar 

  • Lange K, Williams LM, Young AW, Bullmore ET, Brammer MJ, Williams SCR, Gray JA, Phillips ML (2003) Task instructions modulate neural responses to fearful facial expressions. Biol Psychiatry 53:226–232

    Article  PubMed  Google Scholar 

  • Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44:151–162

    Article  CAS  PubMed  Google Scholar 

  • Marsh AA, Finger EC, Buzas B, Soliman N, Richell RA, Vythilingham M, Pine DS, Goldman D, Blair RJR (2006) Impaired recognition of fear facial expressions in 5-HTTLPR S-polymorphism carriers following tryptophan depletion. Psychopharmacol 189:387–394

    Article  CAS  Google Scholar 

  • Murphy SE, Longhitano C, Ayres RE, Cowen PJ, Harmer CJ (2006) Tryptophan supplementation induces a positive bias in the processing of emotional material in healthy female volunteers. Psychopharmacology 187:121–130

    Article  CAS  PubMed  Google Scholar 

  • Pazos A, Probst A, Palacios JM (1987a) Serotonin receptors in the human brain—III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21:97–122

    Article  CAS  PubMed  Google Scholar 

  • Pazos A, Probst A, Palacios JM (1987b) Serotonin receptors in the human brain—IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21:123–139

    Article  CAS  PubMed  Google Scholar 

  • Phillips ML, Medford N, Young AW, Williams L, Williams SCR, Bullmore ET, Gray JA, Brammer MJ (2001) Time courses of left and right amygdalar responses to fearful facial expressions. Human Brain Mapping 12:193–202

    Google Scholar 

  • Phillips ML, Drevets WC, Rauch SL, Lane R (2003) Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 54:504–514

    Article  PubMed  Google Scholar 

  • Schmitt J, Jorissen B, Sobczak S, van Boxtel MPJ, Hogervorst E, Deutz NEP, Riedel W (2000) Tryptophan depletion impairs memory consolidation but improves focussed attention in healthy young volunteers. J Psychopharmacol 14:21–29

    Article  CAS  PubMed  Google Scholar 

  • Spillmann MK, Van der Does AJW, Rankin MA, Vuolo RD, Alpert JE, Nierenberg AA, Rosenbaum JF, Hayden D, Schoenfeld D, Fava M (2001) Tryptophan depletion in SSRi-recovered depressed outpatients. Psychopharmacology 155:123–127

    Article  CAS  PubMed  Google Scholar 

  • Surguladze SA, Brammer MJ, Young AW, Andrew C, Travis MJ, Williams SCR, Phillips ML (2003) A preferential increase in the extrastriate response to signals of danger. NeuroImage 19:1317–1328

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: three-dimensional proportional systems. Thieme Medical Thieme Medical, Stuttgart

    Google Scholar 

  • van der Veen FM, Evers EAT, Deutz NEP, Schmitt JAJ (2006) Effects of acute tryptophan depletion on mood and facial emotion perception related brain activation and performance in healthy women with and without a family history of depression. Neuropsychopharmacol 32:216–224

    Article  Google Scholar 

  • Varnäs K, Halldin C, Hall H (2004) Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum Brain Mapp 22:246–260

    Article  PubMed  Google Scholar 

  • Wechsler D (1981) Wechsler Adult Intelligence Scale: WAIS-R. Psychological Corporation, New York

    Google Scholar 

  • Young SN, Smith SE, Pihl RO, Ervin FR (1985) Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology V87:173–177

    Article  Google Scholar 

  • Young SN, Pihl RO, Ervin FR (1988) The effect of altered tryptophan levels on mood and behavior in normal human males. Clin Neuropharmacol 11:S207–S215

    CAS  PubMed  Google Scholar 

  • Young SN, Ervin FR, Pihl RO, Finn P (1989) Biochemical aspects of tryptophan depletion in primates. Psychopharmacology 98:508–511

    Article  CAS  PubMed  Google Scholar 

  • Young AW, Perrett DI, Calder AJ, Sprengelmeyer R, Ekman P (2002) Facial expressions of emotion: stimuli and tests (FEEST). Thames Valley Test Company, Bury St. Edmunds

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Health Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen Daly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Table 1

(DOC 333 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Daly, E., Deeley, Q., Hallahan, B. et al. Effects of acute tryptophan depletion on neural processing of facial expressions of emotion in humans. Psychopharmacology 210, 499–510 (2010). https://doi.org/10.1007/s00213-010-1850-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1850-7

Keywords

  • Acute tryptophan depletion
  • Emotions
  • fMRI
  • Serotonin