Skip to main content
Log in

Angiotensin IV elevates oxytocin levels in the rat amygdala and produces anxiolytic-like activity through subsequent oxytocin receptor activation

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

The effects of angiotensin (Ang) IV result from binding to a constitutively active metallopeptidase known as the AT4 receptor (or oxytocinase/insulin-regulated membrane aminopeptidase). While in vitro evidence indicates that Ang IV inhibits the peptidase activity of AT4 receptors, leading to increases in the concentrations of several peptides, including oxytocin, the consequence of inhibiting AT4 peptidase activity in vivo remains unresolved.

Discussion

Microdialysis coupled to immunoassay techniques revealed that systemic and intra-amygdala injection of Nle-Ang IV, a metabolically stable derivative of Ang IV, significantly elevated extracellular levels of oxytocin in the rat amygdala. Based on earlier reports describing the anxiolytic-like effects of oxytocin, we investigated whether disrupting AT4 peptidase activity would yield similar responses. In the mouse four-plate test, acute treatment with either Nle-Ang IV or LVV-hemorphin-7, a related AT4 receptor ligand, elicited significant increases in the number of punished crossings. These behavioral responses were comparable to the anxiolytic-like effects of oxytocin and to the standard anxiolytic agent, chlordiazepoxide. Cotreatment with either the AT4 receptor antagonist, divalinal, or the selective oxytocin receptor antagonist, WAY-162720, reversed the anxiolytic-like effects of Nle-Ang IV, while combining ineffective doses of Nle-Ang IV and oxytocin increased the number of punished crossings in this assay. Conversely, Nle-Ang IV and LVV-hemorphin-7 were inactive in the mouse tail suspension test of antidepressant activity. These findings represent the first in vivo demonstration of the peptidase activity of AT4 receptors, confirm the anxiolytic-like properties of Ang IV, and reveal a unique and previously uncharacterized relationship between AT4 and oxytocin receptor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albiston AL, Mustafa T, McDowall SG, Mendelsohn FAO, Lee J, Chai SY (2003) AT(4) receptor is insulin-regulated membrane aminopeptidase: potential mechanisms of memory enhancement. Trends Endocrinol Metab 14:72–77

    Article  PubMed  CAS  Google Scholar 

  • Arletti R, Bertolini A (1987) Oxytocin acts as an antidepressant in two animal models of depression. Life Sci 41:1725–1730

    Article  PubMed  CAS  Google Scholar 

  • Aron C, Simon P, Larousse C, Boissier JR (1971) Evaluation of a rapid technique for detecting minor tranquilizers. Neuropharmacology 10:459–469

    Article  PubMed  CAS  Google Scholar 

  • Bale TL, Davis AM, Auger AP, Dorsa DM, McCarthy MM (2001) CNS region-specific oxytocin receptor expression: importance in regulation of anxiety and sex behavior. J Neurosci 21:2546–2552

    PubMed  CAS  Google Scholar 

  • Chai SY, Bastias MA, Clune EF, Matsacos DJ, Mustafa T, Lee JH, McDowall SG, Paxinos G, Mendelsohn FA, Albiston AL (2000) Distribution of angiotensin IV binding sites (AT4 receptor) in the human forebrain, midbrain and pons as visualised by in vitro receptor autoradiography. J Chem Neuroanat 20:339–348

    Article  PubMed  CAS  Google Scholar 

  • Chai SY, Fernando R, Peck G, Ye SY, Mendelsohn FAO, Jenkins TA, Albiston AL (2004) The angiotensin IV/AT(4) receptor. Cell Mol Life Sci 61:2728–2737

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

    Article  PubMed  CAS  Google Scholar 

  • Ferguson JN, Aldag JM, Insel TR, Young LJ (2001) Oxytocin in the medial amygdala is essential for social recognition in the mouse. J Neurosci 21:8278–8285

    PubMed  CAS  Google Scholar 

  • Gard PR, Daw P, Mashhour ZS, Tran P (2007) Interactions of angiotensin IV and oxytocin on behaviour in mice. J Renin Angiotensin Aldosterone Syst 8:133–138

    Article  PubMed  CAS  Google Scholar 

  • Herbst JJ, Ross SA, Scott HM, Bobin SA, Morris NJ, Lienhard GE, Keller SR (1997) Insulin stimulates cell surface aminopeptidase activity toward vasopressin in adipocytes. Am J Physiol 272:E600–E606

    PubMed  CAS  Google Scholar 

  • Keller SR, Scott HM, Mastick CC, Aebersold R, Lienhard GE (1995) Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. J Biol Chem 270:23612–23618

    Article  PubMed  CAS  Google Scholar 

  • Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S, Gruppe H, Mattay VS, Gallhofer B, Meyer-Lindenberg A (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 25:11489–11493

    Article  PubMed  CAS  Google Scholar 

  • Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E (2005) Oxytocin increases trust in humans. Nature 435:673–676

    Article  PubMed  CAS  Google Scholar 

  • Kovacs GL, De Wied D (1994) Peptidergic modulation of learning and memory processes. Pharmacol Rev 46:269–291

    PubMed  CAS  Google Scholar 

  • Krebs LT, Kramar EA, Hanesworth JM, Sardinia MF, Ball AE, Wright JW, Harding JW (1996) Characterization of the binding properties and physiological action of divalinal-angiotensin IV, a putative AT4 receptor antagonist. Regul Pept 67:123–130

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Albiston AL, Allen AM, Mendelsohn FA, Ping SE, Barrett GL, Murphy M, Morris MJ, McDowall SG, Chai SY (2004) Effect of I.C.V. injection of AT4 receptor ligands, NLE1-angiotensin IV and LVV-hemorphin 7, on spatial learning in rats. Neuroscience 124:341–349

    Article  PubMed  CAS  Google Scholar 

  • Lee PR, Brady DL, Shapiro RA, Dorsa DM, Koenig JI (2007) Prenatal stress generates deficits in rat social behavior: reversal by oxytocin. Brain Res 1156:152–167

    Google Scholar 

  • Matsumoto H, Rogi T, Yamashiro K, Kodama S, Tsuruoka N, Hattori A, Takio K, Mizutani S, Tsujimoto M (2000) Characterization of a recombinant soluble form of human placental leucine aminopeptidase/oxytocinase expressed in Chinese hamster ovary cells. Eur J Biochem 267:46–52

    Article  PubMed  CAS  Google Scholar 

  • McCarthy MM, McDonald CH, Brooks PJ, Goldman D (1996) An anxiolytic action of oxytocin is enhanced by estrogen in the mouse. Physiol Behav 60:1209–1215

    Article  PubMed  CAS  Google Scholar 

  • Mlynarik M, Zelena D, Bagdy G, Makara GB, Jezova D (2007) Signs of attenuated depression-like behavior in vasopressin deficient Brattleboro rats. Horm Behav 51:395–405

    Article  PubMed  CAS  Google Scholar 

  • Neumann ID, Krömer SA, Toschi N, Ebner K (2000) Brain oxytocin inhibits the (re)activity of the hypothalamo-pituitary–adrenal axis in male rats: involvement of hypothalamic and limbic brain regions. Regul Pept 96:31–38

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) Rat brain in stereotactic coordinates. Academic, San Diego

    Google Scholar 

  • Popik P, Vetulani J, VanRee JM (1996) Facilitation and attenuation of social recognition in rats by different oxytocin-related peptides. Eur J Pharmacol 308:113–116

    Article  PubMed  CAS  Google Scholar 

  • Ring RH, Malberg JE, Potestio L, Ping J, Boikess S, Luo B, Schechter LE, Rizzo S, Rahman Z, Rosenzweig-Lipson S (2006) Anxiolytic-like activity of oxytocin in male mice: behavioral and autonomic evidence, therapeutic implications. Psychopharmacology (Berl) 185:218–225

    Article  CAS  Google Scholar 

  • Ring RH, Schechter LE, Leonard SK, Dwyer JM, Platt BJ, Graf R, Grauer S, Pulicicchio C, Resnick L, Rahman Z, Sukoff Rizzo SJ, Luo B, Beyer CE, Logue SF, Marquis KL, Hughes ZA, Rosenzweig-Lipson S (2010) Receptor and behavioral pharmacology of WAY-267464, a non-peptide oxytocin receptor agonist. Neuropharmacology 58:69–77

    Article  PubMed  CAS  Google Scholar 

  • Ripoll N, Hascoët M, Bourin M (2006) The four-plates test: anxiolytic or analgesic paradigm? Prog Neuropsychopharmacol Biol Psychiatry 30:873–880

    Article  PubMed  Google Scholar 

  • Rush AJ, Zimmerman M, Wisniewski SR, Fava M, Hollon SD, Warden D, Biggs MM, Shores-Wilson K, Shelton RC, Luther JF, Thomas B, Trivedi MH (2005) Comorbid psychiatric disorders in depressed outpatients: demographic and clinical features. J Affect Disord 87:43–55

    Article  PubMed  Google Scholar 

  • Schechter LE, Lin Q, Smith DL, Zhang G, Shan Q, Platt B, Brandt MR, Dawson LA, Cole D, Bernotas R, Robichaud A, Rosenzweig-Lipson S, Beyer CE (2008) Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466. Neuropsychopharmacology 33:1323–1335

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew MV (1983) Morphology of vasopressin and oxytocin neurons and their central vascular projections. Prog Brain Res 60:101–104

    Article  PubMed  CAS  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367–370

    Article  CAS  Google Scholar 

  • Swanson GN, Hanesworth JM, Sardinia MF, Coleman JK, Wright JW, Hall KL, Miller-Wing AV, Stobb JW, Cook VI, Harding EC et al (1992) Discovery of a distinct binding site for angiotensin II (3–8), a putative angiotensin IV receptor. Regul Pept 40:409–419

    Article  PubMed  CAS  Google Scholar 

  • von Bohlen und Halbach O (2003) Angiotensin IV in the central nervous system. Cell Tissue Res 311:1–9

    Article  CAS  Google Scholar 

  • Windle RJ, Shanks N, Lightman SL, Ingram CD (1997) Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology 138:2829–2834

    Article  PubMed  CAS  Google Scholar 

  • Winslow JT, Insel TR (2002) The social deficits of the oxytocin knockout mouse. Neuropeptides 36:221–229

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad E. Beyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyer, C.E., Dwyer, J.M., Platt, B.J. et al. Angiotensin IV elevates oxytocin levels in the rat amygdala and produces anxiolytic-like activity through subsequent oxytocin receptor activation. Psychopharmacology 209, 303–311 (2010). https://doi.org/10.1007/s00213-010-1791-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1791-1

Keywords

Navigation