Skip to main content

Advertisement

Log in

Repeated amphetamine administration in rats revealed consistency across days and a complete dissociation between locomotor and hypothalamic-pituitary-adrenal axis effects of the drug

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Most drugs of abuse stimulate both locomotor activity and the hypothalamic-pituitary-adrenal (HPA) axis, but the relationship between the two responses within the same subjects and their reliabilities has been scarcely studied. Our objectives were to study: (1) the consistency and stability across time of locomotor and HPA activation induced by repeated d-amphetamine (AMPH); (2) the relationship between locomotor and hormonal responses to AMPH; and (3) the relationship between novelty-induced activity and both types of responses to the drug.

Methods

Male adult rats were exposed to a novel environment to study the locomotor response. Later, they were injected with AMPH (2 mg/kg, sc) for 5 days. In Experiment 1, Plasma adrenocorticotropin (ACTH) and corticosterone levels in response to AMPH were studied on days 1, 3, and 5, and locomotor response on days 2 and 4. In Experiment 2, ACTH and corticosterone responses were studied on days 2 and 4, and locomotor response on days 1, 3, and 5.

Results

Across days, both locomotor and HPA responses to the drug were consistent, but independent measures, unrelated to the reactivity to novelty. As measured by the area under the curve, the HPA response to AMPH desensitized with the repeated injection, whereas the initial locomotor response to the drug increased.

Conclusions

Dissociation exists between HPA and locomotor activation induced by AMPH, which seemed to be both reliable individual traits. Locomotor reactivity to novelty was related neither to HPA nor to locomotor responses to AMPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed SH, Cador M (2006) Dissociation of psychomotor sensitization from compulsive cocaine consumption. Neuropsychopharmacology 31:563–571

    Article  CAS  PubMed  Google Scholar 

  • Armario A (2006) The hypothalamic-pituitary-adrenal axis: what can it tell us about stressors? CNS Neurol Disord Drug Targets 5:485–501

    Article  PubMed  Google Scholar 

  • Arndt S, Turvey C, Andreasen NC (1999) Correlating and predicting psychiatric symptom ratings: Spearman’s r versus Kendall’s tau correlation. J Psychiatr Res 33:97–104

    Article  CAS  PubMed  Google Scholar 

  • Bevins RA, Peterson JL (2004) Individual differences in rats’ reactivity to novelty and the unconditioned and conditioned locomotor effects of methamphetamine. Pharmacol Biochem Behav 79:65–74

    Article  CAS  PubMed  Google Scholar 

  • Bornstein SR, Engeland WC, Ehrhart-Bornstein M, Herman JP (2008) Dissociation of ACTH and glucocorticoids. Trends Endocrinol Metab 19:175–180

    Article  CAS  PubMed  Google Scholar 

  • Bradberry CW (2007) Cocaine sensitization and dopamine mediation of cue effects in rodents, monkeys, and humans: areas of agreement, disagreement, and implications for addiction. Psychopharmacology 191:705–717

    Article  CAS  PubMed  Google Scholar 

  • Briegleb SK, Gulley JM, Hoover BR, Zahniser NR (2004) Individual differences in cocaine- and amphetamine-induced activation of male Sprague–Dawley rats: contribution of the dopamine transporter. Neuropsychopharmacology 29:2168–2179

    Article  CAS  PubMed  Google Scholar 

  • Burleson MH, Poehlmann KM, Hawkley LC, Ernst JM, Berntson GG, Malarkey WB, Kiecolt-Glaser JK, Glaser R, Cacioppo JT (2003) Neuroendocrine and cardiovascular reactivity to stress in mid-aged and older women: long-term temporal consistency of individual differences. Psychophysiology 40:358–369

    Article  PubMed  Google Scholar 

  • Charlton BG (1990) Adrenal cortical innervation and glucocorticoid secretion. J Endocrinol 126:5–8

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Hamrick N (2003) Stable individual differences in physiological response to stressors: implications for stress-elicited changes in immune related health. Brain Behav Immun 17:407–414

    Article  CAS  PubMed  Google Scholar 

  • Cronbach LJ (1970) Essentials of psychological testing. Harper & Row, New York

    Google Scholar 

  • de Jong IE, Oitzl MS, de Kloet ER (2007) Adrenalectomy prevents behavioral sensitisation of mice to cocaine in a genotype-dependent manner. Behav Brain Res 177:329–339

    Article  PubMed  Google Scholar 

  • Dellu F, Mayo W, Piazza PV, Le Moal M, Simon H (1993) Individual differences in behavioral response to novelty in rats. Possible relationship with the sensation-seeking trait in man. Pers Individual Diff 15:411–418

    Article  Google Scholar 

  • Deroche V, Marinelli M, Le Moal M, Piazza PV (1997) Glucocorticoids and behavioral effects of psycho stimulants. II: cocaine intravenous self-administration and reinstatement depend on glucocorticoid levels. J Pharmacol Exp Ther 281:1401–1407

    CAS  PubMed  Google Scholar 

  • Deroche-Gamonet V, Sillaber I, Aouizerate B, Izawa R, Jaber M, Ghozland S, Kellendonk C, Le Moal M, Spanagel R, Schutz G, Tronche F, Piazza PV (2003) The glucocorticoid receptor as a potential target to reduce cocaine abuse. J Neurosci 23:4785–4790

    CAS  PubMed  Google Scholar 

  • Dietz DM, Tapocik J, Gaval-Cruz M, Kabbaj M (2005) Dopamine transporter, but not tyrosine hydroxylase, may be implicated in determining individual differences in behavioral sensitization to amphetamine. Physiol Behav 86:347–355

    Article  CAS  PubMed  Google Scholar 

  • Dietz DM, Dietz KC, Moore S, Ouimet CC, Kabbaj M (2008) Repeated social defeat stress-induced sensitization to the locomotor activating effects of d-amphetamine: role of individual differences. Psychopharmacology 198:51–62

    Article  CAS  PubMed  Google Scholar 

  • Forsman L, Lundberg U (1982) Consistency in catecholamine and cortisol excretion in males and females. Pharmacol Biochem Behav 17:555–562

    Article  CAS  PubMed  Google Scholar 

  • Giorgi O, Piras G, Corda MG (2007) The psychogenetically selected Roman high- and low-avoidance rat lines: a model to study the individual vulnerability to drug addiction. Neurosci Biobehav Rev 31:148–163

    Article  CAS  PubMed  Google Scholar 

  • Glac W, Borman A, Badtke P, Stojek W, Orlikowska A, Tokarski J (2006) Amphetamine enhances natural killer cytotoxic activity via beta-adrenergic mechanism. J Physiol Pharmacol 57(Suppl 11):125–132

    PubMed  Google Scholar 

  • Goeders NE, Guerin GF (1996a) Effects of surgical and pharmacological adrenalectomy on the initiation and maintenance of intravenous cocaine self-administration in rats. Brain Res 722:145–152

    Article  CAS  PubMed  Google Scholar 

  • Goeders NE, Guerin GF (1996b) Role of corticosterone in intravenous cocaine self-administration in rats. Neuroendocrinology 64:337–348

    Article  CAS  PubMed  Google Scholar 

  • Hamer M, Gibson EL, Vuononvirta R, Williams E, Steptoe A (2006) Inflammatory and hemostatic responses to repeated mental stress: individual stability and habituation over time. Brain Behav Immun 20:456–459

    Article  PubMed  Google Scholar 

  • Hawkley LC, Burleson MH, Poehlmann KM, Berntson GG, Malarkey WB, Cacioppo JT (2001) Cardiovascular and endocrine reactivity in older females: intertask consistency. Psychophysiology 38:863–872

    Article  CAS  PubMed  Google Scholar 

  • Hooks MS, Jones GH, Neill DB, Justice JB Jr (1992) Individual differences in amphetamine sensitization: dose-dependent effects. Pharmacol Biochem Behav 41:203–210

    Article  CAS  PubMed  Google Scholar 

  • Ignar DM, Kuhn CM (1990) Effects of specific mu and kappa opiate tolerance and abstinence on hypothalamo-pituitary-adrenal axis secretion in the rat. J Pharmacol Exp Ther 255:1287–1295

    CAS  PubMed  Google Scholar 

  • Iversen L (2006) Neurotransmitter transporters and their impact on the development of psychopharmacology. Br J Pharmacol 147(Suppl 1):S82–S88

    Article  CAS  PubMed  Google Scholar 

  • Jansen AS, Schmidt ED, Voorn P, Tilders FJ (2003) Substance induced plasticity in noradrenergic innervation of the paraventricular hypothalamic nucleus. Eur J Neurosci 17:298–306

    Article  PubMed  Google Scholar 

  • Jezova D, Jurcovicova J, Vigas M, Murgas K, Labrie F (1985) Increase in plasma ACTH after dopaminergic stimulation in rats. Psychopharmacology 85:201–203

    Article  CAS  PubMed  Google Scholar 

  • Jezova D, Mlynarik M, Zelena D, Makara GB (2004) Behavioral sensitization to intermittent morphine in mice is accompanied by reduced adrenocorticotropine but not corticosterone responses. Brain Res 1021:63–68

    Article  CAS  PubMed  Google Scholar 

  • Kabbaj M, Devine DP, Savage VR, Akil H (2000) Neurobiological correlates of individual differences in novelty-seeking behavior in the rat: differential expression of stress-related molecules. J Neurosci 20:6983–6988

    CAS  PubMed  Google Scholar 

  • Kalinichev M, White DA, Holtzman SG (2004) Individual differences in locomotor reactivity to a novel environment and sensitivity to opioid drugs in the rat. I. Expression of morphine-induced locomotor sensitization. Psychopharmacology 177:61–67

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum C, Prussner JC, Stone AA, Federenko I, Gaab J, Lintz D, Schommer N, Hellhammer DH (1995) Persistent high cortisol responses to repeated psychological stress in a subpopulation of healthy men. Psychosom Med 57:468–474

    CAS  PubMed  Google Scholar 

  • Koolhaas JM, de Boer SF, Buwalda B, van Reenen K (2007) Individual variation in coping with stress: a multidimensional approach of ultimate and proximate mechanisms. Brain Behav Evol 70:218–226

    Article  PubMed  Google Scholar 

  • Kralj-Fiser S, Scheiber IB, Blejec A, Moestl E, Kotrschal K (2007) Individualities in a flock of free-roaming greylag geese: behavioral and physiological consistency over time and across situations. Horm Behav 51:239–248

    Article  CAS  PubMed  Google Scholar 

  • Levy AD, Li Q, Alvarez Sanz MC, Rittenhouse PA, Kerr JE, Van de Kar LD (1992) Neuroendocrine responses to cocaine do not exhibit sensitization following repeated cocaine exposure. Life Sci 51:887–897

    Article  CAS  PubMed  Google Scholar 

  • Mantsch JR, Yuferov V, Mathieu-Kia AM, Ho A, Kreek MJ (2003) Neuroendocrine alterations in a high-dose, extended-access rat self-administration model of escalating cocaine use. Psychoneuroendocrinology 28:836–862

    Article  CAS  PubMed  Google Scholar 

  • Marinelli M, Piazza PV (2002) Interaction between glucocorticoid hormones, stress and psycho stimulant drugs. Eur J Neurosci 16:387–394

    Article  PubMed  Google Scholar 

  • Marona-Lewicka D, Vetulani J (1988) Stability and variability of locomotor responses of laboratory rodents. IV. The responses of rats and mice to apomorphine and amphetamine. Pol J Pharmacol Pharm 40:281–294

    CAS  PubMed  Google Scholar 

  • Márquez C, Belda X, Armario A (2002) Post-stress recovery of pituitary-adrenal hormones and glucose, but not the response during exposure to the stressor, is a marker of stress intensity in highly stressful situations. Brain Res 926:181–185

    Article  PubMed  Google Scholar 

  • Márquez C, Nadal R, Armario A (2005) Responsiveness of the hypothalamic-pituitary-adrenal axis to different novel environments is a consistent individual trait in adult male outbred rats. Psychoneuroendocrinology 30:179–187

    Article  PubMed  Google Scholar 

  • Miserendino MJ, Haile CN, Kosten TA (2003) Strain differences in response to escapable and inescapable novel environments and their ability to predict amphetamine-induced locomotor activity. Psychopharmacology 167:281–290

    CAS  PubMed  Google Scholar 

  • Moldow RL, Fischman AJ (1987) Cocaine induced secretion of ACTH, beta-endorphin, and corticosterone. Peptides 8:819–822

    Article  CAS  PubMed  Google Scholar 

  • Oswald LM, Wong DF, McCaul M, Zhou Y, Kuwabara H, Choi L, Brasic J, Wand GS (2005) Relationships among ventral striatal dopamine release, cortisol secretion, and subjective responses to amphetamine. Neuropsychopharmacology 30:821–832

    CAS  PubMed  Google Scholar 

  • Piazza PV, Le Moal M (1997) Glucocorticoids as a biological substrate of reward: physiological and pathophysiological implications. Brain Res Brain Res Rev 25:359–372

    Article  CAS  PubMed  Google Scholar 

  • Piazza PV, Deminiere JM, Le Moal M, Simon H (1989) Factors that predict individual vulnerability to amphetamine self-administration. Science 245:1511–1513

    Article  CAS  PubMed  Google Scholar 

  • Piazza PV, Maccari S, Deminiere JM, Le Moal M, Mormede P, Simon H (1991) Corticosterone levels determine individual vulnerability to amphetamine self-administration. Proc Natl Acad Sci U S A 88:2088–2092

    Article  CAS  PubMed  Google Scholar 

  • Piazza PV, Barrot M, Rouge-Pont F, Marinelli M, Maccari S, Abrous DN, Simon H, Le Moal M (1996) Suppression of glucocorticoid secretion and antipsychotic drugs have similar effects on the mesolimbic dopaminergic transmission. Proc Natl Acad Sci U S A 93:15445–15450

    Article  CAS  PubMed  Google Scholar 

  • Rivier C, Vale W (1987) Cocaine stimulates adrenocorticotropin (ACTH) secretion through a corticotropin-releasing factor (CRF)-mediated mechanism. Brain Res 422:403–406

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53

    Article  PubMed  Google Scholar 

  • Rotllant D, Nadal R, Armario A (2007) Differential effects of stress and amphetamine administration on Fos-like protein expression in corticotropin releasing factor-neurons of the rat brain. Dev Neurobiol 67:702–714

    Article  CAS  PubMed  Google Scholar 

  • Ruan WJ, Goldstein RB, Chou SP, Smith SM, Saha TD, Pickering RP, Dawson DA, Huang B, Stinson FS, Grant BF (2008) The alcohol use disorder and associated disabilities interview schedule-IV (AUDADIS-IV): reliability of new psychiatric diagnostic modules and risk factors in a general population sample. Drug Alcohol Depend 92:27–36

    Article  PubMed  Google Scholar 

  • Russig H, Pryce CR, Feldon J (2006) Amphetamine withdrawal leads to behavioral sensitization and reduced HPA axis response following amphetamine challenge. Brain Res 1084:185–195

    Article  CAS  PubMed  Google Scholar 

  • Schmidt ED, Tilders FJ, Janszen AW, Binnekade R, De Vries TJ, Schoffelmeer AN (1995) Intermittent cocaine exposure causes delayed and long-lasting sensitization of cocaine-induced ACTH secretion in rats. Eur J Pharmacol 285:317–321

    Article  CAS  PubMed  Google Scholar 

  • Schmidt ED, Tilders FJ, Binnekade R, Schoffelmeer AN, De Vries TJ (1999) Stressor- or drug-induced sensitization of the corticosterone response is not critically involved in the long-term expression of behavioral sensitization to amphetamine. Neuroscience 92:343–352

    Article  CAS  PubMed  Google Scholar 

  • Schmidt ED, Schoffelmeer AN, De Vries TJ, Wardeh G, Dogterom G, Bol JG, Binnekade R, Tilders FJ (2001) A single administration of interleukin-1 or amphetamine induces long-lasting increases in evoked noradrenaline release in the hypothalamus and sensitization of ACTH and corticosterone responses in rats. Eur J Neurosci 13:1923–1930

    Article  CAS  PubMed  Google Scholar 

  • Sgoifo A, Braglia F, Costoli T, Musso E, Meerlo P, Ceresini G, Troisi A (2003) Cardiac autonomic reactivity and salivary cortisol in men and women exposed to social stressors: relationship with individual ethological profile. Neurosci Biobehav Rev 27:179–188

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Vaccarino FJ, Amalric M, Koob GF (1986) The neural substrates for the motor-activating properties of psycho stimulants: a review of recent findings. Pharmacol Biochem Behav 25:233–248

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Koob GF, Cador M, Lorang M, Hauger RL (1993) Pituitary-adrenal axis responses to acute amphetamine in the rat. Pharmacol Biochem Behav 45:629–637

    Article  CAS  PubMed  Google Scholar 

  • Torres G, Rivier C (1992) Differential effects of intermittent or continuous exposure to cocaine on the hypothalamic-pituitary-adrenal axis and c-fos expression. Brain Res 571:204–211

    Article  CAS  PubMed  Google Scholar 

  • van Belle G, Arnold A (2000) Reliability of cognitive tests used in Alzheimer’s disease. Stat Med 19:1411–1420

    Article  PubMed  Google Scholar 

  • Van Reenen CG, O’Connell NE, Van der Werf JT, Korte SM, Hopster H, Jones RB, Blokhuis HJ (2005) Responses of calves to acute stress: individual consistency and relations between behavioral and physiological measures. Physiol Behav 85:557–570

    Article  PubMed  Google Scholar 

  • Vanderschuren LJ, Everitt BJ (2005) Behavioral and neural mechanisms of compulsive drug seeking. Eur J Pharmacol 526:77–88

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren LJ, Schmidt ED, De Vries TJ, Van Moorsel CA, Tilders FJ, Schoffelmeer AN (1999) A single exposure to amphetamine is sufficient to induce long-term behavioral, neuroendocrine, and neurochemical sensitization in rats. J Neurosci 19:9579–9586

    CAS  PubMed  Google Scholar 

  • Verheij MM, Cools AR (2008) Twenty years of dopamine research: individual differences in the response of accumbal dopamine to environmental and pharmacological challenges. Eur J Pharmacol 585:228–244

    Article  CAS  PubMed  Google Scholar 

  • Vinson GP, Hinson JP, Toth IE (1994) The neuroendocrinology of the adrenal cortex. J Neuroendocrinol 6:235–246

    Article  CAS  PubMed  Google Scholar 

  • Wrona D, Sukiennik L, Jurkowski MK, Jurkowlaniec E, Glac W, Tokarski J (2005) Effects of amphetamine on NK-related cytotoxicity in rats differing in locomotor reactivity and social position. Brain Behav Immun 19:69–77

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the following Institutions from Spain for funding this research: Ministerio de Ciencia e Innovación (SAF2008-01175), Instituto de Salud Carlos III (Redes temáticas de Investigación Cooperativa en Salud, RD06/0001/0015), Ministerio de Sanidad y Consumo (Plan Nacional sobre Drogas) and Generalitat de Catalunya (SGR2009-16).

Animal Care

This research has been conducted according to the “Principles of laboratory animal care” and was carried out in accordance with the European Communities Council Directive (86/609/EEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roser Nadal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagliano, H., Andero, R., Armario, A. et al. Repeated amphetamine administration in rats revealed consistency across days and a complete dissociation between locomotor and hypothalamic-pituitary-adrenal axis effects of the drug. Psychopharmacology 207, 447–459 (2009). https://doi.org/10.1007/s00213-009-1676-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1676-3

Keywords

Navigation