Skip to main content
Log in

Combined administration of an mGlu2/3 receptor agonist and a 5-HT2A receptor antagonist markedly attenuate the psychomotor-activating and neurochemical effects of psychostimulants

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

It was recently reported that administration of the metabotropic glutamate 2 and 3 (mGlu2/3) receptor agonist prodrug LY2140023 to schizophrenic patients decreased positive symptoms. However, at the single, potentially suboptimal, dose that was tested, LY2140023 trended towards being inferior to olanzapine on several indices of efficacy within the Positive and Negative Syndrome Scale.

Objectives

In this study, we examined whether the antipsychotic potential of mGlu2/3 receptor agonism can be enhanced with 5-HT2A receptor antagonism.

Materials and methods

Specifically, we characterized the effects of coadministering submaximally effective doses of the 5-HT2A receptor antagonist M100907 (0.2 mg/kg) and the mGlu2/3 receptor agonist LY379268 (1 mg/kg) on amphetamine-induced and MK-801-induced psychomotor activity in rats, an assay sensitive to antipsychotics. We also determined the effects of coadministering these two compounds on MK-801-induced dopamine and norepinephrine efflux in the nucleus accumbens (NAc).

Results

At the submaximally effective doses tested, the effects of M100907 and LY379268 on amphetamine-induced and MK-801-induced psychomotor activity were significantly greater when given together than when given separately. Furthermore, coadministration of these doses of M100907 and LY379268 reduced MK-801-induced dopamine efflux in the NAc. This effect on dopamine release was not observed with the administration of either compound alone, even at higher doses that attenuated MK-801-induced psychomotor activity.

Conclusions

Our results suggest that a single compound having both mGlu2/3 receptor agonist and 5-HT2A receptor antagonist activity, or coadministration of two compounds selective for these receptors, could be superior in terms of efficacy and/or reduced side-effect liability relative to an mGlu2/3 receptor agonist alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams BW, Moghaddam B (2001) Effect of clozapine, haloperidol, or M100907 on phencyclidine-activated glutamate efflux in the prefrontal cortex. Biol Psychiatry 50:750–757

    Article  PubMed  CAS  Google Scholar 

  • Arnt J (1995) Differential effects of classical and newer antipsychotics on the hypermotility induced by two dose levels of d-amphetamine. Eur J Pharmacol 283:55–62

    Article  PubMed  CAS  Google Scholar 

  • Carlsson M, Carlsson A (1989) The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. J Neural Transm 75:221–226

    Article  PubMed  CAS  Google Scholar 

  • Carr AA, Hay DA, Nizduzak TR (1991) 4-Aroylpiperidines and related carbinols as potent and selective inhibitors of serotonin 5-HT2 receptors. International Congress on Schizophrenia Research, Tuscon

  • Cartmell J, Monn JA, Schoepp DD (2000a) Attenuation of specific PCP-evoked behaviors by the potent mGlu2/3 receptor agonist, LY379268 and comparison with the atypical antipsychotic, clozapine. Psychopharmacology (Berl) 148:423–429

    Article  CAS  Google Scholar 

  • Cartmell J, Monn JA, Schoepp DD (2000b) The mGlu(2/3) receptor agonist LY379268 selectively blocks amphetamine ambulations and rearing. Eur J Pharmacol 400:221–224

    Article  PubMed  CAS  Google Scholar 

  • Cartmell J, Monn JA, Schoepp DD (2000c) Tolerance to the motor impairment, but not to the reversal of PCP-induced motor activities by oral administration of the mGlu2/3 receptor agonist, LY379268. Naunyn Schmiedebergs Arch Pharmacol 361:39–46

    Article  PubMed  CAS  Google Scholar 

  • Chartoff EH, Heusner CL, Palmiter RD (2005) Dopamine is not required for the hyperlocomotor response to NMDA receptor antagonists. Neuropsychopharmacology 30:1324–1333

    PubMed  CAS  Google Scholar 

  • Chausmer AL, Elmer GI, Rubinstein M, Low MJ, Grandy DK, Katz JL (2002) Cocaine-induced locomotor activity and cocaine discrimination in dopamine D2 receptor mutant mice. Psychopharmacology (Berl) 163:54–61

    Article  CAS  Google Scholar 

  • Dickinson SL, Gadie B, Tulloch IF (1988) Alpha 1- and alpha 2-adrenoreceptor antagonists differentially influence locomotor and stereotyped behaviour induced by d-amphetamine and apomorphine in the rat. Psychopharmacology (Berl) 96:521–527

    Article  CAS  Google Scholar 

  • Dominic JA, Moore KE (1969) Acute effects of alpha-methyltyrosine on brain catecholamine levels and on spontaneous and amphetamine-stimulated motor activity in mice. Arch Int Pharmacodyn Ther 178:166–176

    PubMed  CAS  Google Scholar 

  • Galici R, Echemendia NG, Rodriguez AL, Conn PJ (2005) A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity. J Pharmacol Exp Ther 315:1181–1187

    Article  PubMed  CAS  Google Scholar 

  • Gardell LR, Vanover KE, Pounds L, Johnson RW, Barido R, Anderson GT, Veinbergs I, Dyssegaard A, Brunmark P, Tabatabaei A, Davis RE, Brann MR, Hacksell U, Bonhaus DW (2007) ACP-103, a 5-hydroxytryptamine 2A receptor inverse agonist, improves the antipsychotic efficacy and side-effect profile of haloperidol and risperidone in experimental models. J Pharmacol Exp Ther 322:862–870

    Article  PubMed  CAS  Google Scholar 

  • Gewirtz JC, Marek GJ (2000) Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors. Neuropsychopharmacology 23:569–576

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, Lopez-Gimenez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–97

    Article  PubMed  CAS  Google Scholar 

  • Harker KT, Whishaw IQ (2002) Place and matching-to-place spatial learning affected by rat inbreeding (Dark-Agouti, Fischer 344) and albinism (Wistar, Sprague-Dawley) but not domestication (wild rat vs. Long-Evans, Fischer-Norway). Behav Brain Res 134:467–477

    Article  PubMed  Google Scholar 

  • Hatip-Al-khati I, Bolukbasi F, Mishima K, Egashira N, Iwasaki K, Fujiwara M (2001) Role of dopaminergic system in core part of nucleus accumbens in hyperlocomotion and rearing induced by MK-801 in rats: a behavioral and in vivo microdialysis study. Jpn J Pharmacol 87:277–287

    Article  PubMed  CAS  Google Scholar 

  • Hoffman DC (1992) Typical and atypical neuroleptics antagonize MK-801-induced locomotion and stereotypy in rats. J Neural Transm Gen Sect 89:1–10

    Article  PubMed  CAS  Google Scholar 

  • Hollister AS, Breese GR, Cooper BR (1974) Comparison of tyrosine hydroxylase and dopamine-beta-hydroxylase inhibition with the effects of various 6-hydroxydopamine treatments on d-amphetamine induced motor activity. Psychopharmacologia 36:1–16

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Vezina P (2002) The mGlu2/3 receptor agonist LY379268 blocks the expression of locomotor sensitization by amphetamine. Pharmacol Biochem Behav 73:333–337

    Article  PubMed  CAS  Google Scholar 

  • Kinon BJ (2009) LY2140023 monohydrate: an agonist at the mGlu2/3 receptor for the treatment of schizophrenia. International Congress on Schizophrenia Research, San Diego

  • Lorrain DS, Schaffhauser H, Campbell UC, Baccei CS, Correa LD, Rowe B, Rodriguez DE, Anderson JJ, Varney MA, Pinkerton AB, Vernier JM, Bristow LJ (2003) Group II mGlu receptor activation suppresses norepinephrine release in the ventral hippocampus and locomotor responses to acute ketamine challenge. Neuropsychopharmacology 28:1622–1632

    Article  PubMed  CAS  Google Scholar 

  • Maj J, Sowinska H, Kapturkiewicz Z, Sarnak J (1972) The effect of L-dopa and (+)-amphetamine on the locomotor activity after pimozide and phenoxybenzamine. J Pharm Pharmacol 24:412–414

    PubMed  CAS  Google Scholar 

  • Marcus MM, Nomikos GG, Svensson TH (1996) Differential actions of typical and atypical antipsychotic drugs on dopamine release in the core and shell of the nucleus accumbens. Eur Neuropsychopharmacol 6:29–38

    Article  PubMed  CAS  Google Scholar 

  • Marek GJ, Wright RA, Schoepp DD, Monn JA, Aghajanian GK (2000) Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. J Pharmacol Exp Ther 292:76–87

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Matsubara S, Lee JC (1989a) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251:238–246

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Matsubara S, Lee JC (1989b) The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull 25:390–392

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Arvanitis L, Bauer D, Rein W (2004) Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder. Am J Psychiatry 161:975–984

    Article  PubMed  Google Scholar 

  • Miyamoto S, Mailman RB, Lieberman JA, Duncan GE (2001) Blunted brain metabolic response to ketamine in mice lacking D(1A) dopamine receptors. Brain Res 894:167–180

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–1352

    Article  PubMed  CAS  Google Scholar 

  • Monn JA, Valli MJ, Massey SM, Hansen MM, Kress TJ, Wepsiec JP, Harkness AR, Grutsch JL Jr, Wright RA, Johnson BG, Andis SL, Kingston A, Tomlinson R, Lewis R, Griffey KR, Tizzano JP, Schoepp DD (1999) Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0] hexane-2,6-dicarboxylic acid (LY354740): identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors. J Med Chem 42:1027–1040

    Article  PubMed  CAS  Google Scholar 

  • Ouagazzal A, Nieoullon A, Amalric M (1994) Locomotor activation induced by MK-801 in the rat: postsynaptic interactions with dopamine receptors in the ventral striatum. Eur J Pharmacol 251:229–236

    Article  PubMed  CAS  Google Scholar 

  • Paiva T, Arriaga F, Wauquier A, Lara E, Largo R, Leitao JN (1988) Effects of ritanserin on sleep disturbances of dysthymic patients. Psychopharmacology (Berl) 96:395–399

    Article  CAS  Google Scholar 

  • Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nat Med 13:1102–1107

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates, 2nd edn. Academic, New York

    Google Scholar 

  • Prusky GT, Harker KT, Douglas RM, Whishaw IQ (2002) Variation in visual acuity within pigmented, and between pigmented and albino rat strains. Behav Brain Res 136:339–348

    Article  PubMed  Google Scholar 

  • Rex A, Voigt JP, Gustedt C, Beckett S, Fink H (2004) Anxiolytic-like profile in Wistar, but not Sprague-Dawley rats in the social interaction test. Psychopharmacology (Berl) 177:23–34

    Article  CAS  Google Scholar 

  • Schlechter JM, Butcher LL (1972) Blockade by pimozide of (+)-amphetamine-induced hyperkinesia in mice. J Pharm Pharmacol 24:408–409

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, Fadayel GM (1996) Regional effects of MK-801 on dopamine release: effects of competitive NMDA or 5-HT2A receptor blockade. J Pharmacol Exp Ther 277:1541–1549

    PubMed  CAS  Google Scholar 

  • Schoepp DD (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 299:12–20

    PubMed  CAS  Google Scholar 

  • Svensson TH, Mathe JM, Andersson JL, Nomikos GG, Hildebrand BE, Marcus M (1995) Mode of action of atypical neuroleptics in relation to the phencyclidine model of schizophrenia: role of 5-HT2 receptor and alpha 1-adrenoceptor antagonism [corrected]. J Clin Psychopharmacol 15:11S–18S

    PubMed  CAS  Google Scholar 

  • Swanson CJ, Schoepp DD (2002) The group II metabotropic glutamate receptor agonist (−)-2-oxa-4-aminobicyclo[3.1.0.]hexane-4,6-dicarboxylate (LY379268) and clozapine reverse phencyclidine-induced behaviors in monoamine-depleted rats. J Pharmacol Exp Ther 303:919–927

    Article  PubMed  CAS  Google Scholar 

  • Swanson CJ, Schoepp DD (2003) A role for noradrenergic transmission in the actions of phencyclidine and the antipsychotic and antistress effects of mGlu2/3 receptor agonists. Ann N Y Acad Sci 1003:309–317

    Article  PubMed  CAS  Google Scholar 

  • van Laar M, Volkerts E, Verbaten M (2001) Subchronic effects of the GABA-agonist lorazepam and the 5-HT2A/2C antagonist ritanserin on driving performance, slow wave sleep and daytime sleepiness in healthy volunteers. Psychopharmacology (Berl) 154:189–197

    Article  Google Scholar 

  • Wadenberg ML, Hicks PB, Richter JT, Young KA (1998) Enhancement of antipsychoticlike properties of raclopride in rats using the selective serotonin2A receptor antagonist MDL 100,907. Biol Psychiatry 44:508–515

    Article  PubMed  CAS  Google Scholar 

  • Wadenberg MG, Browning JL, Young KA, Hicks PB (2001) Antagonism at 5-HT(2A) receptors potentiates the effect of haloperidol in a conditioned avoidance response task in rats. Pharmacol Biochem Behav 68:363–370

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR (2007) Schizophrenia drug says goodbye to dopamine. Nat Med 13:1018–1019

    Article  PubMed  CAS  Google Scholar 

  • Weissman A, Koe BK (1965) Behavioral effects of l-alpha-methyltyrosine, an inhibitor of tyrosine hydroxylase. Life Sci 4:1037–1048

    Article  PubMed  CAS  Google Scholar 

  • Weissman A, Koe BK, Tenen SS (1966) Antiamphetamine effects following inhibition of tyrosine hydroxylase. J Pharmacol Exp Ther 151:339–352

    PubMed  CAS  Google Scholar 

  • Xu M, Guo Y, Vorhees CV, Zhang J (2000) Behavioral responses to cocaine and amphetamine administration in mice lacking the dopamine D1 receptor. Brain Res 852:198–207

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Marlene Jacobson for the helpful comments and discussion regarding the manuscript. In addition, the authors thank Merck’s drug metabolism and pharmacokinetics group for the analysis of MK-801 concentration in the brain and the medicinal chemistry group for the synthesis of LY379268 and M100907. These studies were supported by Merck & Co., Inc., West Point, PA, USA from where all authors are employed. No direct conflict of interest is anticipated and there are no biomedical financial interests regarding this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason M. Uslaner.

Additional information

Jason M. Uslaner and Sean M. Smith denote equal contribution to the experiments and the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uslaner, J.M., Smith, S.M., Huszar, S.L. et al. Combined administration of an mGlu2/3 receptor agonist and a 5-HT2A receptor antagonist markedly attenuate the psychomotor-activating and neurochemical effects of psychostimulants. Psychopharmacology 206, 641–651 (2009). https://doi.org/10.1007/s00213-009-1644-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1644-y

Keywords

Navigation