Skip to main content
Log in

Nicotine-conditioned place preference induced CREB phosphorylation and Fos expression in the adult rat brain

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Experimental evidence indicates that nicotine causes long-lasting changes in the brain associated with behavior. Although much has been learned about factors participating in this process, less is known concerning the mechanisms and brain areas involved in nicotine preference.

Objectives

The objective of this study is to examine the participation of brain structures during the development of nicotine-conditioned place preference (CPP).

Methods

To identify brain regions activated in CPP, we have measured the levels of phosphorylated cyclic AMP response element binding protein (pCREB) and Fos protein using a behavioral CPP and conditioned place aversion (CPA) paradigms.

Results

Rats developed reliable and robust CPP and also CPA. During nicotine preference and reinstatement behaviors, a significant increase of both pCREB and Fos protein expression occurs in the nucleus accumbens (NAc) and ventral tegmental area (VTA) and also in the prefrontal cortex (PFC), dorsal striatum (DStr), amygdala, and hippocampus. These increases were abolished by the administration of mecamylamine or by a CPA protocol, showing a specific activation of pCREB in drug preference animals, mediated by nicotinic receptors. Specifically in the VTA, nicotine-induced preference and reinstatement of the preference caused the activation of dopaminergic and GABAergic cells in different proportions.

Conclusion

The results indicate that the phosphorylation of CREB and expression of Fos protein, as indicators of neural activity, accompany the acquisition and maintenance of nicotine-induced CPP but not CPA in mesolimbic areas (NAc, VTA, PFC, and DStr) as well as in memory consolidation structures (hippocampus and amygdala) and nicotinic receptor are involved in this process. Taken together, these studies identify the brain regions where pCREB activity is essential for nicotine preference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Berke JD, Hyman SE (2000) Addiction, dopamine and the molecular mechanisms of memory. Neuron 25:515–532

    Article  PubMed  CAS  Google Scholar 

  • Bernabeu R, Bevilaqua L, Ardenghi P, Bromberg E, Schmitz P, Bianchin M, Izquierdo I, Medina JH (1997) Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc Natl Acad Sci U S A 94:7041–7046

    Article  PubMed  CAS  Google Scholar 

  • Brunzell DH, Russell DS, Picciotto MR (2003) In vivo nicotine treatment regulates mesocorticolimbic CREB and ERK signaling in C57Bl/6J mice. J Neurochem 84:1431–1441

    Article  PubMed  CAS  Google Scholar 

  • Brunzell DH, Mineur YS, Neve RL, Picciotto MR (2009) Nucleus accumbens CREB activity is necessary for nicotine conditioned place preference. Neuropsychopharmacology 34(8):1993–2001

    Article  PubMed  CAS  Google Scholar 

  • Calcagnetti DJ, Schechter MD (1994) Nicotine place preference using the biased method of conditioning. Prog Neuropsychopharmacol Biol Psychiatry 18:925–933

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    Article  PubMed  CAS  Google Scholar 

  • Cassel S, Carouge D, Gensburger C, Anglard P, Burgun C, Dietrich JB, Aunis D, Zwiller J (2006) Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain. Mol Pharmacol 70:487–492

    Article  PubMed  CAS  Google Scholar 

  • Cogesshal RE, Lekan HA (1996) Methods for determining numbers of cells and synapses: a case for more uniform standards of review. J Comp Neurol 364:6–15

    Article  Google Scholar 

  • Dani JA, Heinemann S (1996) Molecular and cellular aspects of nicotine abuse. Neuron 16:905–908

    Article  PubMed  CAS  Google Scholar 

  • Fisher JL, Pidoplichko VI, Dani JA (1998) Nicotine modifies the activity of ventral tegmental area dopaminergic neurons and hippocampal GABAergic neurons. J Physiol Paris 92:209–213

    Article  PubMed  CAS  Google Scholar 

  • Forget B, Hamon M, Thiébot MH (2005) Cannabinoid CB1 receptors are involved in motivational effects of nicotine in rats. Psychopharmacology 181:722–734

    Article  PubMed  CAS  Google Scholar 

  • Grottick AJ, Trube G, Corrigall WA, Huwyler J, Malherbe P, Wyler R, Higgins GA (2000) Evidence that nicotinic alpha(7) receptors are not involved in the hyperlocomotor and rewarding effects of nicotine. J Pharmacol Exp Ther 294:1112–1119

    PubMed  CAS  Google Scholar 

  • Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B et al (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. Acta Pathol Microbiol Immunol Scand 96:857–881

    CAS  Google Scholar 

  • Hyman SE (2005) Addiction: a disease of learning and memory. Am J Psychiatry 162:1414–1422

    Article  PubMed  Google Scholar 

  • Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2:695–703

    Article  PubMed  CAS  Google Scholar 

  • Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598

    Article  PubMed  CAS  Google Scholar 

  • Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8:844–858

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE (2004) Memory and addiction: review shared neural circuitry and molecular mechanisms. Neuron 44:161–179

    Article  PubMed  CAS  Google Scholar 

  • Koob G, Kreek MJ (2007) Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am J Psychiatry 164:1149–1159

    Article  PubMed  Google Scholar 

  • Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42:961–972

    Article  PubMed  CAS  Google Scholar 

  • Laviolette SR, van der Kooy D (2003) Blockade of mesolimbic dopamine transmission dramatically increases sensitivity to the rewarding effects of nicotine in the ventral tegmental area. Mol Psychiatry 8:50–59

    Article  PubMed  CAS  Google Scholar 

  • Laviolette SR, Van der Kooy D (2004) The neurobiology of nicotine addiction: bridging the gap from molecules to behavior. Nat Rev Neurosci 5:55–65

    Article  PubMed  CAS  Google Scholar 

  • Le Foll B, Goldberg SR (2005) Nicotine induces conditioned place preferences over a large range of doses in rats. Psychopharmacology (Berl) 178:481–492

    Article  CAS  Google Scholar 

  • Le Foll B, Goldberg SR (2006) Nicotine as a typical drug of abuse in experimental animals and humans. Psychopharmacology 184:367–381

    Article  PubMed  CAS  Google Scholar 

  • Liu ZH, Jin WQ (2004) Decrease of ventral tegmental area dopamine neuronal activity in nicotine withdrawal rats. NeuroReport 15:1479–1481

    Article  PubMed  CAS  Google Scholar 

  • Mansvelder HD, McGehee DS (2000) Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27:349–357

    Article  PubMed  CAS  Google Scholar 

  • Mansvelder HD, Keath JR, McGehee DS (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33:905–919

    Article  PubMed  CAS  Google Scholar 

  • Miller CA, Marshall JF (2005) Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 47:873–884

    Article  PubMed  CAS  Google Scholar 

  • Montag-Sallaz M, Welzl H, Kuhl D, Montag D, Schachner M (1999) Novelty-induced increased expression of immediate-early genes c-fos and arg 3.1 in the mouse brain. J Neurobiol 38:234–246

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ (2002) Common molecular and cellular substrates of addiction and memory. Neurobiol Learn Mem 78:637–647

    Article  PubMed  CAS  Google Scholar 

  • Pandey SC, Roy A, Xu T, Mittal N (2001) Effects of protracted nicotine exposure and withdrawal on the expression and phosphorylation of the CREB gene transcription factor in rat brain. J Neurochem 77:943–952

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, Léna C, Marubio LM, Pich EM, Fuxe K, Changeux JP (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    Article  PubMed  CAS  Google Scholar 

  • Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390:401–404

    Article  PubMed  CAS  Google Scholar 

  • Pluzarev O, Pandey SC (2004) Modulation of CREB expression and phosphorylation in the rat nucleus accumbens during nicotine exposure and withdrawal. J Neurosci Res 77:884–891

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (1999) Drug addiction: bad habits add up. Nature 398:567–570

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (2002) Limbic-striatal memory systems and drug addiction. Neurobiol Learn Mem 78:625–636

    Article  PubMed  CAS  Google Scholar 

  • Salminen O, Lahtinen S, Ahtee L (1996) Expression of Fos protein in various rat brain areas following acute nicotine and diazepam. Pharmacol Biochem Behav 54:241–248

    Article  PubMed  CAS  Google Scholar 

  • Salminen O, Seppä T, Gäddnäs H, Ahtee L (1999) The effects of acute nicotine on the metabolism of dopamine and the expression of Fos protein in striatal and limbic brain areas of rats during chronic nicotine infusion and its withdrawal. J Neurosci 19:8145–8151

    PubMed  CAS  Google Scholar 

  • Schiltz CA, Kelley AE, Landry CF (2005) Contextual cues associated with nicotine administration increase arc mRNA expression in corticolimbic areas of the rat brain. Eur J NeuroSci 21:1703–1711

    Article  PubMed  Google Scholar 

  • Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factoractivated by diverse array of extracellular signals. Annu Rev Biochem 68:821–861

    Article  PubMed  CAS  Google Scholar 

  • Stolerman IP, Jarvis MJ (1995) The scientific case that nicotine is addictive. Psychopharmacology 117:2–10

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56:613–672

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462

    Article  PubMed  CAS  Google Scholar 

  • Ungless MA, Whistler JL, Malenka RC, Bonci A (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411:583–587

    Article  PubMed  CAS  Google Scholar 

  • Vastola BJ, Douglas LA, Varlinskaya EI, Spear LP (2002) Nicotine-induced conditioned place preference in adolescent and adult rats. Physiol Behav 77:107–114

    Article  PubMed  CAS  Google Scholar 

  • Walters CL, Cleck JN, Kuo YC, Blendy JA (2005) Mu-opioid receptor and CREB activation are required for nicotine reward. Neuron 46:933–943

    Article  PubMed  CAS  Google Scholar 

  • Wilmouth CE, Spear LP (2006) Withdrawal from chronic nicotine in adolescent and adult rats. Pharmacol Biochem Behav 85:648–657

    Article  PubMed  CAS  Google Scholar 

  • Wolf ME (2003) LTP may trigger addiction. Mol Interv 3:248–252

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Zhou Y, Xiong ZQ (2007) Transducer of regulated CREB and late phase long-term synaptic potentiation. FEBS J 274:3218–3223

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Agencia Nacional de Promocion Cientifica y Tecnologica and CONICET (R.B.), Argentina. We thank M. P. Faillace and J. Zwiller for the helpful comments and discussion and Maria Rosato Siri for some help in the first version of the manuscript.

Competing interest statement

The authors declare that they have no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon O. Bernabeu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1S

a Low magnification pictures shows the brain areas analyzed for VTA and NAc. NAcc NAc core, NAcs NAc shell. b The stringent criterion applied to pCREB and Fos quantification. a The picture shows pCREB-positive nuclei and a line used as a reference to measure the intensity of each nucleus, named 1, 2, 3, and 4. Scale bar 20 µm. b The y-axis represents intensity. The x-axis represents the distance of the line drew in a. Each number represents the four nucleus of figure a. Only the intensity values that were higher than a determined intensity (horizontal arrow) were considered positive (GIF 47.3 kb)

High resolution image file (TIFF 2.52 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pascual, M.M., Pastor, V. & Bernabeu, R.O. Nicotine-conditioned place preference induced CREB phosphorylation and Fos expression in the adult rat brain. Psychopharmacology 207, 57–71 (2009). https://doi.org/10.1007/s00213-009-1630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1630-4

Keywords

Navigation