Skip to main content
Log in

Involvement of α1-adrenoceptors in conditioned place preference supported by nicotine in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The noradrenergic system might be a critical mediator of psychostimulants and opiates hedonic value.

Objectives

The objective of this study is to evaluate the involvement of α1-adrenoceptors (α1-ARs) in nicotine incentive learning.

Materials and methods

Rats, subjected to an unbiased conditioned place preference (CPP) procedure, received eight 30-min alternating nicotine (0.06 mg/kg) and saline pairings with distinct floor textures. The α1-AR antagonist, prazosin (0.125, 0.25, 0.5, or 1 mg/kg), was administered 30 min before nicotine pairings (acquisition) or one of the two 20-min test sessions conducted 24 h and 3 weeks after conditioning (expression).

Results

Pre-pairing injections of prazosin (0.5–1 mg/kg) prevented the acquisition of nicotine-CPP. On pre-test administration, prazosin (0.5 mg/kg) abolished the short-term expression of nicotine-CPP; whereas, none of the tested doses impaired its long-term expression. During a drug-free 3-week test session, nicotine-CPP was also weakened in rats given prazosin (0.5 mg/kg) before the 24-h test, while nicotine-CPP was reduced neither in animals given prazosin immediately after the first test session nor in those not subjected to the 24-h test.

Conclusions

The activation of α1-ARs is one of the mechanisms that code for the incentive motivational value of nicotine. It participates also in the short-term, but not the long-term, control of behavior by nicotine-paired stimuli. The latter effect does not result from disruption by prazosin of either memory for the nicotine-cue association or reconsolidation processes at recall. Thus, differences exist in the neurobiological mechanisms that contribute to the incentive motivational value of nicotine and the short- and long-term “memory” of the incentive salience acquired by nicotine-paired cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander SPH, Mathie A, Peters JA (2008) Guide to receptors and channels (GRAC), 3rd edn. Br J Pharmacol 153(Suppl 2):S1–S209

    Article  PubMed  Google Scholar 

  • Auclair A, Cotecchia S, Glowinski J, Tassin JP (2002) D-amphetamine fails to increase extracellular dopamine levels in mice lacking alpha 1b-adrenergic receptors: relationship between functional and nonfunctional dopamine release. J Neurosci 22:9150–9154

    PubMed  CAS  Google Scholar 

  • Auclair A, Drouin C, Cotecchia S, Glowinski J, Tassin JP (2004) 5-HT2A and alpha1b-adrenergic receptors entirely mediate dopamine release, locomotor response and behavioural sensitization to opiates and psychostimulants. Eur J Neurosci 20:3073–3084

    Article  PubMed  Google Scholar 

  • Balfour DJ (2002) Neuroplasticity within the mesoaccumbens dopamine system and its role in tobacco dependence. Curr Drug Targets CNS Neurol Disord 1:413–421

    Article  PubMed  CAS  Google Scholar 

  • Bassareo V, De Luca MA, Di Chiara G (2007) Differential impact of pavlovian drug conditioned stimuli on in vivo dopamine transmission in the rat accumbens shell and core and in the prefrontal cortex. Psychopharmacology (Berl) 191:689–703

    Article  CAS  Google Scholar 

  • Benwell ME, Balfour DJ (1997) Regional variation in the effects of nicotine on catecholamine overflow in rat brain. Eur J Pharmacol 325:13–20

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Kringelbach ML (2008) Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology (Berl) 199:457–480

    Article  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    Article  PubMed  CAS  Google Scholar 

  • Berridge CW, Stratford TL, Foote SL, Kelley AE (1997) Distribution of dopamine beta-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens. Synapse 27:230–241

    Article  PubMed  CAS  Google Scholar 

  • Carr KD (2007) Chronic food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol Behav 91:459–472

    Article  PubMed  CAS  Google Scholar 

  • Carr GD, Fibiger HC, Phillips AG (1989) Conditioned place preference as a measure of drug reward. In: Liebman JM, Cooper SJ (eds) The neuropharmacological basis of reward. Clarendon Press, Oxford, pp 264–319

    Google Scholar 

  • Chaperon F, Soubrié P, Puech AJ, Thiébot MH (1998) Involvement of central cannabinoid (CB1) receptors in the establishment of place conditioning in rats. Psychopharmacology (Berl) 135:324–332

    Article  CAS  Google Scholar 

  • Cheer JF, Wassum KM, Sombers LA, Heien ML, Ariansen JL, Aragona BJ, Phillips PE, Wightman RM (2007) Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci 27:791–795

    Article  PubMed  CAS  Google Scholar 

  • Darracq L, Blanc G, Glowinski J, Tassin JP (1998) Importance of the noradrenaline-dopamine coupling in the locomotor activating effects of D-amphetamine. J Neurosci 18:2729–2739

    PubMed  CAS  Google Scholar 

  • Di Chiara G (2000) Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol 393:295–314

    Article  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278

    Article  PubMed  Google Scholar 

  • Drouin C, Blanc G, Trovero F, Glowinski J, Tassin JP (2001) Cortical alpha 1-adrenergic regulation of acute and sensitized morphine locomotor effects. Neuroreport 12:3483–3486

    Article  PubMed  CAS  Google Scholar 

  • Drouin C, Darracq L, Trovero F, Blanc G, Glowinski J, Cotecchia S, Tassin JP (2002a) Alpha1b-adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates. J Neurosci 22:2873–2884

    PubMed  CAS  Google Scholar 

  • Drouin C, Blanc G, Villégier AS, Glowinski J, Tassin JP (2002b) Critical role of alpha1-adrenergic receptors in acute and sensitized locomotor effects of D-amphetamine, cocaine, and GBR 12,783: influence of preexposure conditions and pharmacological characteristics. Synapse 43:51–61

    Article  PubMed  CAS  Google Scholar 

  • Forget B, Hamon M, Thiébot MH (2005) Cannabinoid CB1 receptors are involved in motivational effects of nicotine in rats. Psychopharmacology (Berl) 181:722–734

    Article  CAS  Google Scholar 

  • Forget B, Barthélémy S, Saurini F, Hamon M, Thiébot MH (2006) Differential involvement of the endocannabinoid system in short- and long-term expression of incentive learning supported by nicotine in rats. Psychopharmacology (Berl) 189:59–69

    Article  CAS  Google Scholar 

  • Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6:119–130

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Matta SG, James TJ, Sharp BM (1998) Nicotine-induced norepinephrine release in the rat amygdala and hippocampus is mediated through brainstem nicotinic cholinergic receptors. J Pharmacol Exp Ther 284:1188–1196

    PubMed  CAS  Google Scholar 

  • Fu Y, Matta SG, Kane VB, Sharp BM (2003) Norepinephrine release in amygdala of rats during chronic nicotine self-administration: an in vivo microdialysis study. Neuropharmacology 45:514–523

    Article  PubMed  CAS  Google Scholar 

  • Greenwell TN, Walker BM, Cottone P, Zorrilla EP, Koob GF (2009) The alpha1 adrenergic receptor antagonist prazosin reduces heroin self-administration in rats with extended access to heroin administration. Pharmacol Biochem Behav 91:295–302

    Article  PubMed  CAS  Google Scholar 

  • Grenhoff J, Svensson TH (1993) Prazosin modulates the firing pattern of dopamine neurons in rat ventral tegmental area. Eur J Pharmacol 233:79–84

    Article  PubMed  CAS  Google Scholar 

  • Grottick AJ, Higgins GA (2000) Effect of subtype selective nicotinic compounds on attention as assessed by the five-choice serial reaction time task. Behav Brain Res 117:197–208

    Article  PubMed  CAS  Google Scholar 

  • Hahn B, Stolerman IP (2005) Modulation of nicotine-induced attentional enhancement in rats by adrenoceptor antagonists. Psychopharmacology (Berl) 177:438–447

    Article  CAS  Google Scholar 

  • Jackson HC, Bearham MC, Hutchins LJ, Mazurkiewicz SE, Needham AM, Heal DJ (1997) Investigation of the mechanisms underlying the hypophagic effects of the 5-HT and noradrenaline reuptake inhibitor, sibutramine, in the rat. Br J Pharmacol 121:1613–1618

    Article  PubMed  CAS  Google Scholar 

  • Jasmin L, Narasaiah M, Tien D (2006) Noradrenaline is necessary for the hedonic properties of addictive drugs. Vascul Pharmacol 45:243–250

    Article  PubMed  CAS  Google Scholar 

  • Lee JL, Di Ciano P, Thomas KL, Everitt BJ (2005) Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron 47:795–801

    Article  PubMed  CAS  Google Scholar 

  • Léna C, de Kerchove D’Exaerde A, Cordero-Erausquin M, Le Novère N, del Mar Arroyo-Jimenez M, Changeux JP (1999) Diversity and distribution of nicotinic acetylcholine receptors in the locus ceruleus neurons. Proc Natl Acad Sci U S A 96:12126–12131

    Article  PubMed  Google Scholar 

  • Mathé JM, Nomikos GG, Hildebrand BE, Hertel P, Svensson TH (1996) Prazosin inhibits MK-801-induced hyperlocomotion and dopamine release in the nucleus accumbens. Eur J Pharmacol 309:1–11

    Article  PubMed  Google Scholar 

  • Miller CA, Marshall JF (2005) Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 47:873–884

    Article  PubMed  CAS  Google Scholar 

  • Mingote S, de Bruin JP, Feenstra MG (2004) Noradrenaline and dopamine efflux in the prefrontal cortex in relation to appetitive classical conditioning. J Neurosci 24:2475–2480

    Article  PubMed  CAS  Google Scholar 

  • Mitchell SN (1993) Role of the locus coeruleus in the noradrenergic response to a systemic administration of nicotine. Neuropharmacology 32:937–949

    Article  PubMed  CAS  Google Scholar 

  • Mombereau C, Lhuillier L, Kaupmann K, Cryan JF (2007) GABAB receptor-positive modulation-induced blockade of the rewarding properties of nicotine is associated with a reduction in nucleus accumbens DeltaFosB accumulation. J Pharmacol Exp Ther 321:172–177

    Article  PubMed  CAS  Google Scholar 

  • Morrison JH, Molliver ME, Grzanna R, Coyle JT (1981) The intra-cortical trajectory of the coeruleo-cortical projection in the rat: a tangentially organized cortical afferent. Neuroscience 6:139–158

    Article  PubMed  CAS  Google Scholar 

  • Olson VG, Heusner CL, Bland RJ, During MJ, Weinshenker D, Palmiter RD (2006) Role of noradrenergic signaling by the nucleus tractus solitarius in mediating opiate reward. Science 311:1017–1020

    Article  PubMed  CAS  Google Scholar 

  • Reid JL, Vincent J (1986) Clinical pharmacology and therapeutic role of prazosin and related alpha-adrenoceptor antagonists. Cardiology 73:164–174

    Article  PubMed  CAS  Google Scholar 

  • Rezvani AH, Levin ED (2001) Cognitive effects of nicotine. Biol Psychiatry 49:258–267

    Article  PubMed  CAS  Google Scholar 

  • Rezvani AH, Bushnell PJ, Levin ED (2002) Effects of nicotine and mecamylamine on choice accuracy in an operant visual signal detection task in female rats. Psychopharmacology (Berl) 164:369–375

    Article  CAS  Google Scholar 

  • Rice ME, Cragg SJ (2004) Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci 7:583–584

    Article  PubMed  CAS  Google Scholar 

  • Robinson MJ, Franklin KB (2007) Central but not peripheral beta-adrenergic antagonism blocks reconsolidation for a morphine place preference. Behav Brain Res 182:129–134

    Article  PubMed  CAS  Google Scholar 

  • Sahraei H, Ghazzaghi H, Zarrindast MR, Ghoshooni H, Sepehri H, Haeri-Rohan A (2004) The role of alpha-adrenoceptor mechanism(s) in morphine-induced conditioned place preference in female mice. Pharmacol Biochem Behav 78:135–141

    Article  PubMed  CAS  Google Scholar 

  • Schank JR, Ventura R, Puglisi-Allegra S, Alcaro A, Cole CD, Liles LC, Seeman P, Weinshenker D (2006) Dopamine beta-hydroxylase knockout mice have alterations in dopamine signaling and are hypersensitive to cocaine. Neuropsychopharmacology 31:2221–2230

    PubMed  CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    Article  PubMed  CAS  Google Scholar 

  • Sharp BM, Matta SG (1993) Detection by in vivo microdialysis of nicotine-induced norepinephrine secretion from the hypothalamic paraventricular nucleus of freely moving rats: dose-dependency and desensitization. Endocrinology 133:11–19

    Article  PubMed  CAS  Google Scholar 

  • Shearman E, Rossi S, Sershen H, Hashim A, Lajtha A (2005) Locally administered low nicotine-induced neurotransmitter changes in areas of cognitive function. Neurochem Res 30:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Shi WX, Pun CL, Zhang XX, Jones MD, Bunney BS (2000) Dual effects of D-amphetamine on dopamine neurons mediated by dopamine and nondopamine receptors. J Neurosci 20:3504–3511

    PubMed  CAS  Google Scholar 

  • Sirviö J, MacDonald E (1999) Central alpha1-adrenoceptors: their role in the modulation of attention and memory formation. Pharmacol Ther 83:49–65

    Article  PubMed  Google Scholar 

  • Sommermeyer H, Frielingsdorf J, Knorr A (1995) Effects of prazosin on the dopaminergic neurotransmission in rat brain. Eur J Pharmacol 276:267–270

    Article  PubMed  CAS  Google Scholar 

  • Stolerman IP, Naylor C, Elmer GI, Goldberg SR (1999) Discrimination and self-administration of nicotine by inbred strains of mice. Psychopharmacology (Berl) 141:297–306

    Article  CAS  Google Scholar 

  • Stolerman IP, Mirza NR, Hahn B, Shoaib M (2000) Nicotine in an animal model of attention. Eur J Pharmacol 393:147–154

    Article  PubMed  CAS  Google Scholar 

  • Summers KL, Giacobini E (1995) Effects of local and repeated systemic administration of (−) nicotine on extracellular levels of acetylcholine, norepinephrine, dopamine, and serotonin in rat cortex. Neurochem Res 20:753–759

    Article  PubMed  CAS  Google Scholar 

  • Tronson NC, Taylor JR (2007) Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci 8:262–275

    Article  PubMed  CAS  Google Scholar 

  • Ventura R, Cabib S, Alcaro A, Orsini C, Puglisi-Allegra S (2003) Norepinephrine in the prefrontal cortex is critical for amphetamine-induced reward and mesoaccumbens dopamine release. J Neurosci 23:1879–1885

    PubMed  CAS  Google Scholar 

  • Ventura R, Morrone C, Puglisi-Allegra S (2007) Prefrontal/accumbal catecholamine system determines motivational salience attribution to both reward- and aversion-related stimuli. Proc Natl Acad Sci U S A 104:5181–5186

    Article  PubMed  CAS  Google Scholar 

  • Vézina P, Stewart J (1987) Conditioned locomotion and place preference elicited by tactile cues paired exclusively with morphine in an open field. Psychopharmacology (Berl) 91:375–380

    Article  Google Scholar 

  • Villégier AS, Lotfipour S, Belluzzi JD, Leslie FM (2007) Involvement of alpha1-adrenergic receptors in tranylcypromine enhancement of nicotine self-administration in rat. Psychopharmacology (Berl) 193:457–465

    Article  Google Scholar 

  • Walker BM, Rasmussen DD, Raskind MA, Koob GF (2008) Alpha1-noradrenergic receptor antagonism blocks dependence-induced increases in responding for ethanol. Alcohol 42:91–97

    Article  PubMed  CAS  Google Scholar 

  • Wee S, Mandyam CD, Lekic DM, Koob GF (2008) Alpha 1-noradrenergic system role in increased motivation for cocaine intake in rats with prolonged access. Eur Neuropsychopharmacol 18:303–311

    Article  PubMed  CAS  Google Scholar 

  • Weinshenker D, Schroeder JP (2007) There and back again: a tale of norepinephrine and drug addiction. Neuropsychopharmacology 32:1433–1451

    Article  PubMed  CAS  Google Scholar 

  • Weinshenker D, Rust NC, Miller NS, Palmiter RD (2000) Ethanol-associated behaviors of mice lacking norepinephrine. J Neurosci 20:3157–3164

    PubMed  CAS  Google Scholar 

  • Wellman PJ (2000) Norepinephrine and the control of food intake. Nutrition 16:837–842

    Article  PubMed  CAS  Google Scholar 

  • Zarrindast MR, Bahreini T, Adl M (2002) Effect of imipramine on the expression and acquisition of morphine-induced conditioned place preference in mice. Pharmacol Biochem Behav 73:941–949

    Article  PubMed  CAS  Google Scholar 

  • Zhang XY, Kosten TA (2005) Prazosin, an alpha-1 adrenergic antagonist, reduces cocaine-induced reinstatement of drug-seeking. Biol Psychiatry 57:1202–1204

    Article  PubMed  CAS  Google Scholar 

  • Zhang XY, Kosten TA (2007) Previous exposure to cocaine enhances cocaine self-administration in an alpha 1-adrenergic receptor dependent manner. Neuropsychopharmacology 32:638–645

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Sulzer D (2004) Frequency-dependent modulation of dopamine release by nicotine. Nat Neurosci 7:581–582

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by grants from INSERM and University Pierre et Marie Curie. Benoît Forget was the recipient of grants from the “Société de Tabacologie” and the “Fondation pour la Recherche Médicale”. We gratefully acknowledge the technical assistance of Sandrine Barthélémy. The authors warmly thank Dr. Hans C. Neijt for his generous gift of the SuperG Software for image analysis. Experiments were performed in agreement with the institutional guidelines for use of animals and their care, in compliance with national and international laws and policies (Council directive no. 87-848, October 19, 1987, Ministère de l’Agriculture et de la Forêt, Service Vétérinaire de la Santé et de la Protection Animale, permissions no. 75-116 to MH and 75-118 to MHT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Hélène Thiébot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forget, B., Hamon, M. & Thiébot, MH. Involvement of α1-adrenoceptors in conditioned place preference supported by nicotine in rats. Psychopharmacology 205, 503–515 (2009). https://doi.org/10.1007/s00213-009-1559-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1559-7

Keywords

Navigation