Skip to main content
Log in

Delta-9-tetrahydrocannabinol enhances food reinforcement in a mouse operant conflict test

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Cannabinoid compounds are known to regulate feeding behavior by modulating the hedonic and/or the incentive properties of food.

Objectives

The aim of this work was to determine the involvement of the cannabinoid system in food reinforcement associated with a conflict situation generated by stress.

Methods

Mice were trained on a fixed ratio 1 schedule of reinforcement to obtain standard, chocolate-flavored or fat-enriched pellets. Once the acquisition criteria were achieved, the reinforced lever press was paired with foot-shock exposure, and the effects of Δ9-tetrahydrocannabinol (THC; 1 mg/kg) were evaluated in this conflict paradigm.

Results

THC did not modify the operant response in mice trained with standard pellets. In contrast, THC improved the instrumental performance of mice trained with chocolate-flavored and fat-enriched pellets. However, the cannabinoid agonist did not fully restore the baseline responses obtained previous to foot-shock delivery. THC ameliorated the performance to obtain high palatable food in this conflict test in both food-restricted and sated mice. The effects of THC on food reinforcement seem to be long-lasting since mice previously treated with this compound showed a better recovery of the instrumental behavior after foot-shock exposure.

Conclusions

These findings reveal that the cannabinoid system is involved in the regulation of goal-directed responses towards high palatable and high caloric food under stressful situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abel EL (1975) Cannabis effects on hunger and thirst. Behav Biol 15:255–281

    Article  PubMed  CAS  Google Scholar 

  • Arizzi MN, Cervone KM, Aberman JE, Betz A, Liu Q, Lin S, Makriyannis A, Salamone JD (2004) Behavioral effects of inhibition of cannabinoid metabolism: the amidase inhibitor AM374 enhances the suppression of lever pressing produced by exogenously administered anandamide. Life Sci 74:1001–1011

    Article  PubMed  CAS  Google Scholar 

  • Arnone M, Maruani J, Chaperon F, Thiébot MH, Poncelet M, Soubrié P, Le Fur G (1997) Selective inhibition of sucrose and ethanol intake by SR141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacology 132:104–106

    Article  PubMed  CAS  Google Scholar 

  • Ayensu WK, Pucilowski O, Mason GA, Overstreet DH, Rezvani AH, Janowsky DS (1995) Effects of chronic mild stress on serum complement activity, saccharin preference, and corticosterone levels in Flinders lines of rats. Physiol Behav 57:165–169

    Article  PubMed  CAS  Google Scholar 

  • Balerio GN, Aso E, Maldonado R (2005) Involvement of the opioid system in the effects induced by nicotine on anxiety-like behaviour in mice. Psychopharmacology 181:260–269

    Article  PubMed  CAS  Google Scholar 

  • Balerio GN, Aso E, Maldonado R (2006) Role of the cannabinoid system in the effects induced by nicotine on anxiety-like behaviour in mice. Psychopharmacology 184:504–513

    Article  PubMed  CAS  Google Scholar 

  • Carriero D, Aberman J, Lin SY, Hill A, Makriyannis A, Salamone JD (1998) A detailed characterization of the effects of four cannabinoid agonists on operant lever pressing. Psychopharmacology 137:147–156

    Article  PubMed  CAS  Google Scholar 

  • Chhatwal JP, Davis M, Maguschak KA, Ressler KJ (2005) Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology 30:516–524

    Article  PubMed  CAS  Google Scholar 

  • Cota D, Marsicano G, Lutz B, Vicennati V, Stalla GK, Pasquali R, Pagotto U (2003a) Endogenous cannabinoid system as a modulator of food intake. Int J Obes Relat Metab Disord 27:289–301

    Article  PubMed  CAS  Google Scholar 

  • Cota D, Marsicano G, Tschöp M, Grübler Y, Flachskamm C, Schubert M, Auer D, Yassouridis A, Thöne-Reineke C, Ortmann S, Tomassoni F, Cervino C, Nisoli E, Linthorst AC, Pasquali R, Lutz B, Stalla GK, Pagotto U (2003b) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 112:423–431

    PubMed  CAS  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    Article  PubMed  CAS  Google Scholar 

  • Dardano JF (1968) Reversal of preference under progressive-ratio schedules by punishment. J Exp Anal Behav 11:133–146

    Article  PubMed  CAS  Google Scholar 

  • Despres JP, Golay A, Sjöström L (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353:2121–2134

    Article  PubMed  CAS  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  PubMed  CAS  Google Scholar 

  • De Vry J, Schreiber R, Eckel G, Jentzsch KR (2004) Behavioral mechanisms underlying inhibition of food-maintained responding by the cannabinoid receptor antagonist/inverse agonist SR141716A. Eur J Pharmacol 483:55–63

    Article  PubMed  Google Scholar 

  • Di Marzo V, Matias I (2005) Endocannabinoid control of food intake and energy balance. Nat Neurosci 8:585–589

    Article  PubMed  Google Scholar 

  • Di Marzo V, Szallasi A (2008) Rimonabant in rats with metabolic syndrome: good news after the depression. Br J Pharmacol 154:915–917

    Article  PubMed  Google Scholar 

  • Di Marzo V, Goparaju SK, Wang L, Liu J, Batkai S, Járai Z, Fezza F, Miura GI, Palmiter RD, Sugiura T, Kunos G (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–825

    Article  PubMed  Google Scholar 

  • Foltin RW, Haney M (2007) Effects of the cannabinoid antagonist SR141716 (rimonabant) and d-amphetamine on palatable food and food pellet intake in non-human primates. Pharmacol Biochem Behav 86:766–773

    Article  PubMed  CAS  Google Scholar 

  • Geller I, Seifter J (1960) The effects of meprobamate, barbiturates, d-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacologia 1:482–492

    Article  CAS  Google Scholar 

  • Giuliani D, Ottani A, Ferrari F (2000) Effects of the cannabinoid receptor agonist, HU 210, on ingestive behaviour and body weight of rats. Eur J Pharmacol 391:275–279

    Article  PubMed  CAS  Google Scholar 

  • Gomita Y, Ichimaru Y, Moriyama M, Araki H, Futagami K (2003) Effects of anxiolytic drugs on rewarding and aversive behaviors induced by intracranial stimulation. Acta Med Okayama 57:95–108

    PubMed  CAS  Google Scholar 

  • Harrold JA, Elliott JC, King PJ, Widdowson PS, Williams G (2002) Down-regulation of cannabinoid-1 (CB-1) receptors in specific extrahypothalamic regions of rats with dietary obesity: a role for endogenous cannabinoids in driving appetite for palatable food? Brain Res 952:232–238

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    PubMed  CAS  Google Scholar 

  • Howell LA, Harris RBS, Clarke C, Youngblood BD, Ryan DH, Gilbertson TA (1999) The effects of restraint stress on intake of preferred and nonpreferred solutions in rodents. Physiol Behav 65:697–704

    Article  PubMed  CAS  Google Scholar 

  • Kamprath K, Marsicano G, Tang J, Monory K, Bisogno T, Di Marzo V, Lutz B, Wotjak CT (2006) Cannabinoid CB1 receptor mediates fear extinction via habituation-like processes. J Neurosci 26:6677–6686

    Article  PubMed  CAS  Google Scholar 

  • Kirkham TC, Williams CM (2001) Endogenous cannabinoids and appetite. Nutr Res Rev 14:65–86

    Article  PubMed  CAS  Google Scholar 

  • Koch JE (2001) Δ9-THC stimulates food intake in Lewis rats. Effects on chow, high fat and sweet high fat diets. Pharmacol Biochem Behav 68:539–543

    Article  PubMed  CAS  Google Scholar 

  • Koch JE, Matthews SM (2001) Delta9-tetrahydrocannabinol stimulates palatable food intake in Lewis rats: effects of peripheral and central administration. Nutr Neurosci 4:179–187

    PubMed  CAS  Google Scholar 

  • Maccioni P, Pes D, Carai MAM, Gessa GL, Colombo G (2008) Suppression by the cannabinoid CB1 antagonist, rimonabant, of the reinforcing and motivational properties of a chocolate-flavoured beverage in rats. Behav Pharmacol 19:197–209

    Article  PubMed  CAS  Google Scholar 

  • Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgänsberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534

    Article  PubMed  CAS  Google Scholar 

  • Martin BR, Lichtman AH (1998) Cannabinoid transmission and pain perception. Neurobiol Dis 5:447–461

    Article  PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin PJ, Lu D, Winston KM, Thakur G, Swezey LA, Makriyannis A, Salamone JD (2005) Behavioral effects of the novel cannabinoid full agonist AM 411. Pharmacol Biochem Behav 81:78–88

    Article  PubMed  CAS  Google Scholar 

  • Miller CC, Murray TF, Freeman KG, Edwards GL (2004) Cannabinoid agonist, CP 55, 940, facilitates intake of palatable foods when injected into the hindbrain. Physiol Behav 80:611–616

    Article  PubMed  CAS  Google Scholar 

  • Monory K, Blaudzun H, Massa F, Kaiser N, Lemberger T, Schütz G, Wotjak CT, Lutz B, Marsicano G (2007) Genetic dissection of behavioural and autonomic effects of Delta(9)-tetrahydrocannabinol in mice. PLoS Biol 5:2354–2368

    Article  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    Article  PubMed  CAS  Google Scholar 

  • Onaivi ES, Green MR, Martin BR (1990) Pharmacological characterization of cannabinoids in the elevated plus maze. J Pharmacol Exp Ther 253:1002–1009

    PubMed  CAS  Google Scholar 

  • Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R (2006) The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 27:73–100

    Article  PubMed  CAS  Google Scholar 

  • Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295:761–775

    Article  PubMed  CAS  Google Scholar 

  • Rademacher DJ, Hillard CJ (2007) Interactions between endocannabinoids and stress-induced decreased sensitivity to natural rewards. Prog Neuropsychopharmacol Biol Psychiatry 31:633–641

    Article  PubMed  CAS  Google Scholar 

  • Ravinet-Trillou C, Delgorge C, Menet C, Arnone M, Soubrie P (2004) CB1 cannabinoid receptor knockout mice leads to leanness, resistance to diet-induced obesity and enhanced insulin sensitivity. Int J Obes Relat Metab Disord 28:640–648

    Article  PubMed  CAS  Google Scholar 

  • Rowland NE, Mukherjee M, Robertson K (2001) Effects of the cannabinoid receptor antagonist SR141716, alone and in combination with dexfenfluramine or naloxone, on food intake in rats. Psychopharmacology 159:111–116

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, McLaughlin PJ, Sink K, Makriyannis A, Parker LA (2007) Cannabinoid CB1 receptor inverse agonist and neutral antagonists: effects on food intake, food-reinforced behavior and food aversions. Physiol Behav 91:383–388

    Article  PubMed  CAS  Google Scholar 

  • Schäfer A, Pfrang J, Neumüller J, Fiedler S, Ertl G, Bauersachs J (2008) The cannabinoid receptor-1 antagonist rimonabant inhibits platelet activation and reduces pro-inflammatory chemokines and leukocytes in Zucker rats. Br J Pharmacol 154:1047–1054

    Article  PubMed  Google Scholar 

  • Scheen AJ, Finer N, Hollander P, Jensen MD, Van Gaal LF (2006) Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 368:1660–1672

    Article  PubMed  CAS  Google Scholar 

  • Sink KS, McLaughlin PJ, Wood JAT, Brown C, Fan P, Vemuri VK, Peng Y, Olszewska T, Thakur GA, Makriyannis A, Parker LA, Salamone JD (2008) The novel CB1 receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 33:946–955

    Article  PubMed  CAS  Google Scholar 

  • Smith RL, Barrett RJ (1997) Tolerance to the anticonflict effects of diazepam: importance of methodological considerations. Pharmacol Biochem Behav 58:61–66

    Article  PubMed  CAS  Google Scholar 

  • Solinas M, Goldberg SR (2005) Motivational effects of cannabinoids and opioids on food reinforcement depend on simultaneous activation of cannabinoid and opioid systems. Neuropsychopharmacology 30:2035–2045

    Article  PubMed  CAS  Google Scholar 

  • Tullis C, Walters G (1968) Punished and unpunished responding in multiple variable-interval schedules. J Exp Anal Behav 11:147–152

    Article  PubMed  CAS  Google Scholar 

  • Thornton-Jones ZD, Vickers SP, Clifton PG (2005) The cannabinoid CB1 receptor antagonist SR141716A reduces appetitive and consummatory responses for food. Psychopharmacology 179:452–460

    Article  PubMed  CAS  Google Scholar 

  • Valjent E, Mitchell JM, Besson MJ, Caboche J, Maldonado R (2002) Behavioural and biochemical evidence for interactions between Δ9-tetrahydrocannabinol and nicotine. Br J Pharmacol 135:564–578

    Article  PubMed  CAS  Google Scholar 

  • Van Gaal L, Pi-Sunyer X, Despres J-P, McCarthy C, Scheen A (2008) Efficacy and safety of rimonabant for improvement of multiple cardiometabolic risk factors in overweight/obese patients. Pooled 1-year data from the Rimonabant in Obesity (RIO) program. Diabetes Care 31:S229–S240

    Article  PubMed  Google Scholar 

  • Verty AN, McGregor IS, Mallet PE (2004) The dopamine receptor antagonist SCH23390 attenuates feeding induced by Delta9-tetrahydrocannabinol. Brain Res 1020:188–195

    Article  PubMed  CAS  Google Scholar 

  • Ward SJ, Dykstra LA (2005) The role of CB1 receptors in sweet versus fat reinforcement: effects of CB1 deletion, CB1 receptor antagonism (SR141716A) and CB1 receptor agonism (CP-55940). Behav Pharmacol 16:381–388

    Article  PubMed  CAS  Google Scholar 

  • Wiley JL, Burston JJ, Leggett DC, Alekseeva OO, Razdan RK, Mahadevan A, Martin BR (2005) CB1 cannabinoid receptor-mediated modulation of food intake in mice. Br J Pharmacol 145:293–300

    Article  PubMed  CAS  Google Scholar 

  • Williams CM, Kirkham TC (2002) Observational analysis of feeding induced by Δ9-THC and anandamide. Physiol Behav 76:241–250

    Article  PubMed  CAS  Google Scholar 

  • Williams CM, Rogers PJ, Kirkham TC (1998) Hyperphagia in pre-fed rats following oral Δ9-THC. Physiol Behav 65:343–346

    Article  PubMed  CAS  Google Scholar 

  • Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93:358–364

    Article  PubMed  CAS  Google Scholar 

  • Yoshino T, Kimura H (1991) Response occurrence to the non-reinforced alternative through punishment in rats. Shinrigaku Kenkyu 62:9–15

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the US National Institutes of Health–National Institute of Drug Abuse (NIH–NIDA) (no. 5R01-DA016768), the Spanish “Ministerio de Educación y Ciencia” (no. SAF2007-64062), the DG Research of the European Commission (GEN-ADDICT, no. LSHM-CT-2004-05166; and PHECOMP, no. LSHM-CT-2007-037669), the “Generalitat de Catalunya-DURSI” (# 2005SGR00131 and ICREA Academia) and the Spanish “Instituto de Salud Carlos III” (no. RD06/001/001). M.F.B. was supported by a post-doctoral fellowship from Fyssen Foundation. E.M.G. was supported by a post-doctoral fellowship from the Spanish “Instituto de Salud Carlos III”. We thank Dr. Patricia Robledo for stylistic revision of the manuscript.

Conflict of interest statement

R. Maldonado has received research grants from Sanofi-Aventis, Esteve, and Ferrer. Neither of the other authors have relevant financial interests to disclose, nor a conflict of interest of any kind.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Maldonado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbano, M.F., Castañé, A., Martín-García, E. et al. Delta-9-tetrahydrocannabinol enhances food reinforcement in a mouse operant conflict test. Psychopharmacology 205, 475–487 (2009). https://doi.org/10.1007/s00213-009-1557-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1557-9

Keywords

Navigation