Cannabinoid-induced conditioned place preference in the spontaneously hypertensive rat–an animal model of attention deficit hyperactivity disorder

Abstract

Rationale

Cannabis preparations are the most widely consumed illicit drugs, and their use typically begins in adolescence. The prevalence of cannabis abuse is higher in patients with attention deficit/hyperactivity disorder (ADHD) than in the general population, yet, knowledge about the motivational properties of cannabinoids in animal models of ADHD are lacking.

Objective

To compare the motivational effects of the synthetic cannabinoid agonist WIN55,212-2 (WIN) in adolescent and adult spontaneously hypertensive rats (SHR), a validated animal model of ADHD, and Wistar rats, representing a “normal” genetically heterogeneous population. We also asked whether the effects of WIN depended (1) on the activation of the cerebral subtype of cannabinoid receptors, namely, the CB1 cannabinoid receptor and (2) on putative changes by WIN in blood pressure.

Methods

WIN was tested under an unbiased conditioned place preference (CPP) paradigm. Blood pressure after WIN administration was also monitored in additional groups of rats.

Results

In the Wistar rats, WIN produced place aversion only in the adult but not adolescent rats. In contrast, WIN produced CPP in both adolescent and adult SHR rats. The behavioral effects of WIN were CB1-mediated and not related to blood pressure.

Conclusion

The contrasting effects of WIN in Wistar and SHR, and the higher resistance of adolescent rats to the aversive and rewarding effects of WIN in these two strains suggests that both adolescence and the ADHD-like profile exhibited by the SHR strain constitute factors that influence the motivational properties of cannabinoids.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adriani W, Laviola G. Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model. Behav Pharmacol. 2004;15:341–352.

    PubMed  Article  CAS  Google Scholar 

  2. Adriani W, Seta DD, Dessi-Fulgheri F, Farabollini F, Laviola G. Altered profiles of spontaneous novelty seeking, impulsive behavior, and response to d-amphetamine in rats perinatally exposed to bisphenol A. Environ Health Perspect. 2003;111:395–401.

    PubMed  CAS  Google Scholar 

  3. Andersen SL, Arvanitogiannis A, Pliakas AM, LeBlanc C, Carlezon WA Jr. Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nat Neurosci. 2002;5:13–14.

    PubMed  Article  CAS  Google Scholar 

  4. Augustyniak PN, Kourrich S, Rezazadeh SM, Stewart J, Arvanitogiannis A. Differential behavioral and neurochemical effects of cocaine after early exposure to methylphenidate in an animal model of attention deficit hyperactivity disorder. Behav Brain Res. 2006;167:379–382.

    PubMed  Article  CAS  Google Scholar 

  5. Batkai S, Pacher P, Osei-Hyiaman D, Radaeva S, Liu J, Harvey-White J, et al. Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation. 2004;110:1996–2002.

    PubMed  Article  CAS  Google Scholar 

  6. Biederman J, Faraone SV, Spencer T, Wilens T, Mick E, Lapey KA. Gender differences in a sample of adults with attention deficit hyperactivity disorder. Psychiatry Res. 1994;53:13–29.

    PubMed  Article  CAS  Google Scholar 

  7. Biederman J, Monuteaux MC, Mick E, Spencer T, Wilens TE, Silva JM, et al. Young adult outcome of attention deficit hyperactivity disorder: a controlled 10-year follow-up study. Psychol Med. 2006;36:167–179.

    PubMed  Article  Google Scholar 

  8. Braida D, Iosue S, Pegorini S, Sala M. Delta9-tetrahydrocannabinol-induced conditioned place preference and intracerebroventricular self-administration in rats. Eur J Pharmacol. 2004;506:63–69.

    PubMed  Article  CAS  Google Scholar 

  9. Carney JM, Uwaydah IM, Balster RL. Evaluation of a suspension system for intravenous self-administration studies of water-insoluble compounds in the rhesus monkey. Pharmacol Biochem Behav. 1977;7:357–364.

    PubMed  Article  CAS  Google Scholar 

  10. Chambers RA, Taylor JR, Potenza MN. Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry. 2003;160:1041–1052.

    PubMed  Article  Google Scholar 

  11. Chiu P, Rajakumar G, Chiu S, Kwan CY, Mishra RK. Enhanced [3H]spiroperidol binding in striatum of spontaneously hypertensive rat (SHR). Eur J Pharmacol. 1982;82:243–244.

    PubMed  Article  CAS  Google Scholar 

  12. Crews F, He J, Hodge C. Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav. 2007;86:189–199.

    PubMed  Article  CAS  Google Scholar 

  13. Crowley TJ, Macdonald MJ, Whitmore EA, Mikulich SK. Cannabis dependence, withdrawal, and reinforcing effects among adolescents with conduct symptoms and substance use disorders. Drug Alcohol Depend. 1998;50:27–37.

    PubMed  Article  CAS  Google Scholar 

  14. Da Silva GE, Vendruscolo LF, Takahashi RN. Effects of ethanol on locomotor and anxiety-like behaviors and the acquisition of ethanol intake in Lewis and spontaneously hypertensive rats. Life Sci. 2005;77:693–706.

    PubMed  Article  Google Scholar 

  15. Davids E, Zhang K, Tarazi FI, Baldessarini RJ. Animal models of attention-deficit hyperactivity disorder. Brain Res Brain Res Rev. 2003;42:1–21.

    PubMed  Article  Google Scholar 

  16. Deiana S, Fattore L, Spano MS, Cossu G, Porcu E, Fadda P, et al. Strain and schedule-dependent differences in the acquisition, maintenance and extinction of intravenous cannabinoid self-administration in rats. Neuropharmacology. 2007;52:646–654.

    PubMed  Article  CAS  Google Scholar 

  17. Fattore L, Cossu G, Martellotta CM, Fratta W. Intravenous self-administration of the cannabinoid CB1 receptor agonist WIN 55, 212–2 in rats. Psychopharmacology (Berl). 2001;156:410–416.

    Article  CAS  Google Scholar 

  18. Gardner EL, Paredes W, Smith D, Donner A, Milling C, Cohen D, et al. Facilitation of brain stimulation reward by delta 9-tetrahydrocannabinol. Psychopharmacology (Berl). 1988;96:142–144.

    Article  CAS  Google Scholar 

  19. Himelstein J, Newcorn JH, Halperin JM. The neurobiology of attention-deficit hyperactivity disorder. Front Biosci. 2000;5:461–478.

    Article  Google Scholar 

  20. Hoffmann O, Plesan A, Wiesenfeld-Hallin Z. Genetic differences in morphine sensitivity, tolerance and withdrawal in rats. Brain Res. 1998;806:232–237.

    PubMed  Article  CAS  Google Scholar 

  21. Justinova Z, Tanda G, Redhi GH, Goldberg SR. Self-administration of delta(9)-tetrahydrocannabinol (THC) by drug naive squirrel monkeys. Psychopharmacology (Berl). 2003;169:135–140.

    Article  CAS  Google Scholar 

  22. Köfalvi A, Fritzsche M (2008) The Endocannabinoid System is a Major Player in Schizophrenia. In: Köfalvi, A. (Ed.), Cannabinoids and the Brain. Springer US, pp. 485-528. doi:10.1007/978-0-387-74349-3_22

  23. Lake KD, Compton DR, Varga K, Martin BR, Kunos G. Cannabinoid-induced hypotension and bradycardia in rats mediated by CB1-like cannabinoid receptors. J Pharmacol Exp Ther. 1997;281:1030–1037.

    PubMed  CAS  Google Scholar 

  24. Leite JR, Carlini EA. Failure to obtain “cannabis-directed behavior” and abstinence syndrome in rats chronically treated with cannabis sativa extracts. Psychopharmacologia. 1974;36:133–145.

    PubMed  Article  CAS  Google Scholar 

  25. Lepore M, Vorel SR, Lowinson J, Gardner EL. Conditioned place preference induced by delta 9-tetrahydrocannabinol: comparison with cocaine, morphine, and food reward. Life Sci. 1995;56:2073–2080.

    PubMed  Article  CAS  Google Scholar 

  26. Maharajan P, Maharajan V, Ravagnan G, Paino G. The weaver mutant mouse: a model to study the ontogeny of dopamine transmission systems and their role in drug addiction. Prog Neurobiol. 2001;64:269–276.

    PubMed  Article  CAS  Google Scholar 

  27. Maldonado R, Valverde O, Berrendero F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci. 2006;29:225–232.

    PubMed  Article  CAS  Google Scholar 

  28. Mansbach RS, Nicholson KL, Martin BR, Balster RL. Failure of Delta(9)-tetrahydrocannabinol and CP 55, 940 to maintain intravenous self-administration under a fixed-interval schedule in rhesus monkeys. Behav Pharmacol. 1994;5:219–225.

    PubMed  Article  CAS  Google Scholar 

  29. Martellotta MC, Cossu G, Fattore L, Gessa GL, Fratta W. Self-administration of the cannabinoid receptor agonist WIN 55, 212–2 in drug-naive mice. Neuroscience. 1998;85:327–330.

    PubMed  Article  CAS  Google Scholar 

  30. McGregor IS, Issakidis CN, Prior G. Aversive effects of the synthetic cannabinoid CP 55, 940 in rats. Pharmacol Biochem Behav. 1996;53:657–664.

    PubMed  Article  CAS  Google Scholar 

  31. McKeon TW, Hendley ED. Brain monoamines and metabolites in hypertensive and hyperactive rat strains. Clin Exp Hypertens. 1988;10:971–994.

    CAS  Google Scholar 

  32. Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963;27:282–293.

    PubMed  CAS  Google Scholar 

  33. Pamplona FA, Prediger RD, Pandolfo P, Takahashi RN. The cannabinoid receptor agonist WIN 55, 212–2 facilitates the extinction of contextual fear memory and spatial memory in rats. Psychopharmacology (Berl). 2006;188:641–649.

    Article  CAS  Google Scholar 

  34. Pamplona FA, Vendruscolo LF, Takahashi RN. Increased sensitivity to cocaine-induced analgesia in Spontaneously Hypertensive Rats (SHR). Behav Brain Funct. 2007;3:9.

    PubMed  Article  Google Scholar 

  35. Pandolfo P, Pamplona FA, Prediger RD, Takahashi RN. Increased sensitivity of adolescent spontaneously hypertensive rats, an animal model of attention deficit hyperactivity disorder, to the locomotor stimulation induced by the cannabinoid receptor agonist WIN 55, 212–2. Eur J Pharmacol. 2007;563:141–148.

    PubMed  Article  CAS  Google Scholar 

  36. Papa M, Diewald L, Carey MP, Esposito FJ, Gironi Carnevale UA, Sadile AG. A rostro-caudal dissociation in the dorsal and ventral striatum of the juvenile SHR suggests an anterior hypo- and a posterior hyperfunctioning mesocorticolimbic system. Behav Brain Res. 2002;130:171–179.

    PubMed  Article  CAS  Google Scholar 

  37. Parker LA, Gillies T. THC-induced place and taste aversions in Lewis and Sprague–Dawley rats. Behav Neurosci. 1995;109:71–78.

    PubMed  Article  CAS  Google Scholar 

  38. Quinn HR, Matsumoto I, Callaghan PD, Long LE, Arnold JC, Gunasekaran N, et al. Adolescent rats find repeated delta(9)-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure. Neuropsychopharmacology. 2008;33:1113–1126.

    PubMed  Article  CAS  Google Scholar 

  39. Ramos A, Kangerski AL, Basso PF, Da Silva Santos JE, Assreuy J, Vendruscolo LF, et al. Evaluation of Lewis and SHR rat strains as a genetic model for the study of anxiety and pain. Behav Brain Res. 2002;129:113–123.

    PubMed  Article  Google Scholar 

  40. Robbe D, Kopf M, Remaury A, Bockaert J, Manzoni OJ. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc Natl Acad Sci USA. 2002;99:8384–8388.

    PubMed  Article  CAS  Google Scholar 

  41. Russell V, de Villiers A, Sagvolden T, Lamm M, Taljaard J. Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder—the spontaneously hypertensive rat. Brain Res. 1995;676:343–351.

    PubMed  Article  CAS  Google Scholar 

  42. Russell VA, de Villiers AS, Sagvolden T, Lamm MC, Taljaard JJ. Methylphenidate affects striatal dopamine differently in an animal model for attention-deficit/hyperactivity disorder–the spontaneously hypertensive rat. Brain Res Bull. 2000;53:187–192.

    PubMed  Article  CAS  Google Scholar 

  43. Russell VA, Sagvolden T, Johansen EB. Animal models of attention-deficit hyperactivity disorder. Behav Brain Funct. 2005;1:9.

    PubMed  Article  Google Scholar 

  44. Sagvolden T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev. 2000;24:31–39.

    PubMed  Article  CAS  Google Scholar 

  45. Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M. Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57:1239–1247.

    PubMed  Article  Google Scholar 

  46. Sanudo-Pena MC, Tsou K, Delay ER, Hohman AG, Force M, Walker JM. Endogenous cannabinoids as an aversive or counter-rewarding system in the rat. Neurosci Lett. 1997;223:125–128.

    PubMed  Article  CAS  Google Scholar 

  47. Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24:417–463.

    PubMed  Article  CAS  Google Scholar 

  48. Spear LP, Brake SC. Periadolescence: age-dependent behavior and psychopharmacological responsivity in rats. Dev Psychobiol. 1983;16:83–109.

    PubMed  Article  CAS  Google Scholar 

  49. Takahashi RN, Singer G. Self-administration of delta 9-tetrahydrocannabinol by rats. Pharmacol Biochem Behav. 1979;11:737–740.

    PubMed  Article  CAS  Google Scholar 

  50. Tanda G, Munzar P, Goldberg SR. Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nat Neurosci. 2000;3:1073–1074.

    PubMed  Article  CAS  Google Scholar 

  51. Taylor E. Clinical foundations of hyperactivity research. Behav Brain Res. 1998;94:11–24.

    PubMed  Article  CAS  Google Scholar 

  52. Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol. 2007;12:227–462.

    PubMed  Article  CAS  Google Scholar 

  53. Valjent E, Maldonado R. A behavioural model to reveal place preference to delta 9-tetrahydrocannabinol in mice. Psychopharmacology (Berl). 2000;147:436–438.

    Article  CAS  Google Scholar 

  54. van Ree JM, Slangen JL, de Wied D. Intravenous self-administration of drugs in rats. J Pharmacol Exp Ther. 1978;204:547–557.

    PubMed  Google Scholar 

  55. Vendruscolo LF, Izidio GS, Takahashi RN, Ramos A. Chronic methylphenidate treatment during adolescence increases anxiety-related behaviors and ethanol drinking in adult spontaneously hypertensive rats. Behav Pharmacol. 2008;19:21–27.

    PubMed  Article  CAS  Google Scholar 

  56. Vendruscolo LF, Izídio GS, Takahashi RN. Drug reinforcement in a rat model of attention deficit/hyperactivity disorder – the spontaneously hypertensive rat (SHR). Current Drug Abuse Reviews. 2009, in press

  57. Viggiano D, Vallone D, Ruocco LA, Sadile AG. Behavioural, pharmacological, morpho-functional molecular studies reveal a hyperfunctioning mesocortical dopamine system in an animal model of attention deficit and hyperactivity disorder. Neurosci Biobehav Rev. 2003;27:683–689.

    PubMed  Article  CAS  Google Scholar 

  58. Vlachou S, Nomikos GG, Panagis G. CB1 cannabinoid receptor agonists increase intracranial self-stimulation thresholds in the rat. Psychopharmacology (Berl). 2005;179:498–508.

    Article  CAS  Google Scholar 

  59. Vlachou S, Nomikos GG, Stephens DN, Panagis G. Lack of evidence for appetitive effects of Delta 9-tetrahydrocannabinol in the intracranial self-stimulation and conditioned place preference procedures in rodents. Behav Pharmacol. 2007;18:311–319.

    PubMed  Article  CAS  Google Scholar 

  60. Watanabe Y, Fujita M, Ito Y, Okada T, Kusuoka H, Nishimura T. Brain dopamine transporter in spontaneously hypertensive rats. J Nucl Med. 1997;38:470–474.

    PubMed  CAS  Google Scholar 

  61. Wheal AJ, Bennett T, Randall MD, Gardiner SM. Cardiovascular effects of cannabinoids in conscious spontaneously hypertensive rats. Br J Pharmacol. 2007;152:717–724.

    PubMed  Article  CAS  Google Scholar 

  62. Zangen A, Solinas M, Ikemoto S, Goldberg SR, Wise RA. Two brain sites for cannabinoid reward. J Neurosci. 2006;26:4901–4907.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Jamil Assreuy for his expert assistance in blood pressure measurements and to Dr. Attila Köfalvi and Dr. Kelly J. Clemens for helpful comments. P.P. and R.S. are supported by scholarships from CNPq, Brazil. L.F.V. had a post-doctoral fellowship from FONDATION FYSSEN, France. R.N.T. is the holder of a CNPq fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Reinaldo N. Takahashi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pandolfo, P., Vendruscolo, L.F., Sordi, R. et al. Cannabinoid-induced conditioned place preference in the spontaneously hypertensive rat–an animal model of attention deficit hyperactivity disorder. Psychopharmacology 205, 319–326 (2009). https://doi.org/10.1007/s00213-009-1542-3

Download citation

Keywords

  • Attention deficit hyperactivity disorder (ADHD)
  • Drug addiction
  • Adolescence
  • Cannabinoid system
  • Dopamine
  • Reward
  • Aversion
  • Conditioned place preference
  • Inbred strain
  • Spontaneously hypertensive rat (SHR)