Skip to main content
Log in

Inhibition of casein kinase I ε/δ produces phase shifts in the circadian rhythms of Cynomolgus monkeys

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

Circadian rhythms in mammals depend upon the cyclic oscillations of transcriptional/translational feedback loops in pacemaker cells of the suprachiasmatic nucleus. The rise and fall of clock-related proteins is a function of synthesis and degradation, the latter involving phosphorylation by casein kinase Iε and δ.

Objective

Earlier studies by our lab described the actions of a selective CKIε/δ inhibitor, PF-670462, on circadian behavior in rats; the present work extended these studies to a diurnal species, Cynomolgus monkeys.

Materials and methods

General cage activity was used to estimate the circadian rhythms of eight telemeterized monkeys under baseline conditions and following s.c. doses of PF-670462.

Results and discussion

Consolidated bouts of activity were noted during periods of light with a repeating period length of roughly 24 h based on their onset. Reassessment in constant dim light (42 vs. 450 lx) again yielded period lengths of 24 h, in this instance revealing the animals' endogenous rhythm. PF-670462 (10–100 mg/kg s.c.) produced a dose-dependent phase delay in much the same manner as that observed previously in rats. Dosing occurred 1.5 h prior to lights-off, roughly coincident with peaking levels of PER protein, a primary substrate of CKIε/δ.

Conclusions

These findings suggest that the time of dosing, when held constant in both the monkey and rat studies, produced nearly identical effects despite the subjects' diurnal or nocturnal preference. Importantly, these changes in rhythm occurred in the presence of light, revealing the drug as a powerful zeitgeber in a non-human primate and, by extension, in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albers HE, Lydic R, Gander PH, Moore-Ede MC (1984a) Role of the suprachiasmatic nucleus in the circadian timing system of the squirrel monkey. I. The generation of rhythmicity. Brain Res 300:275–284

    Article  PubMed  CAS  Google Scholar 

  • Albers HE, Lydic R, Moore-Ede MC (1984b) Role of the suprachiasmatic nucleus in the circadian timing system of the squirrel monkey. II. Light–dark cycle entrainment. Brain Res 300:285–293

    Article  PubMed  CAS  Google Scholar 

  • Antle MC, Silver R (2005) Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci 28:145–151

    Article  PubMed  CAS  Google Scholar 

  • Badura L, Swanson T, Adamowicz W, Adams J, Cianfrogna J, Fisher K, Holland J, Kleiman R, Nelson F, Reynolds L, Schaeffer E, StGermain K, Tate B, Sprouse J (2007) An inhibitor of casein kinase Iε induces phase delays in circadian rhythms under free-running and entrained conditions. J Pharmacol Exp Ther 322:730–738

    Article  PubMed  CAS  Google Scholar 

  • Bain J, Plater L, Elliott M, Shpiro N, Hastie J, McLauchlan Klevernic I, Arthur JCJ, Alessi DR, Cohen P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315

    Article  PubMed  CAS  Google Scholar 

  • Bunney WE, Bunney BG (2000) Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacol 22:335–345

    Article  CAS  Google Scholar 

  • Cermakian N, Boivin D (2003) A molecular perspective of human circadian disorders. Brain Res Rev 42:204–220

    Article  PubMed  CAS  Google Scholar 

  • Cuninkova L, Brown SA (2008) Peripheral circadian oscillators: interesting mechanisms and powerful tools. Ann NY Acad Sci 1129:358–370

    Article  PubMed  Google Scholar 

  • Dardente H, Cermakian N (2007) Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol Int 24:195–213

    Article  PubMed  CAS  Google Scholar 

  • Eide EJ, Vielhaber EL, Hinz W, Virshup DM (2002) The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iε. J Biol Chem 277:17248–17254

    Article  PubMed  CAS  Google Scholar 

  • Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber EL, Giovanni A, Virshup DM (2005) Control of mammalian circadian rhythm by CKIε-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 25:2795–2807

    Article  PubMed  CAS  Google Scholar 

  • Field MD, Maywood ES, O'Brien J, Weaver DR, Reppert S, Hastings MH (2000) Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanism. Neuron 25:437–447

    Article  PubMed  CAS  Google Scholar 

  • Freeman GM Jr, Webb AB, An S, Herzog ED (2008) For whom the bells toll: networked circadian clocks. Sleep Biol Rhythms 6:67–75

    Article  Google Scholar 

  • Fuller CA, Edgar DM (1986) Effects of light intensity on the circadian temperature and feeding rhythms in the squirrel monkey. Physiol Behav 36:687–691

    Article  PubMed  CAS  Google Scholar 

  • Fuller CA, Lydic R, Sulzman FM, Albers HE, Tepper B, Moore-Ede MC (1981) Circadian rhythm of body temperature persists after suprachiasmatic lesions in the squirrel monkey. Am J Physiol 241:R385–R391

    PubMed  CAS  Google Scholar 

  • Gallego M, Eide EJ, Woolf MF, Virshup DM, Forger DB (2006) An opposite role for tau in circadian rhythms revealed by mathematical modeling. PNAS 103:10618–10623

    Article  PubMed  CAS  Google Scholar 

  • Griffin EA, Staknis D, Weitz CJ (1999) Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286:768–771

    Article  PubMed  CAS  Google Scholar 

  • Hastings MH, Field MD, Maywood ES, Weaver DR, Reppert SM (1999) Differential regulation of mPER1 and mTIM proteins in the mouse suprachiasmatic nuclei: new insights into a core clock mechanism. J Neurosci 19:RC11–RC17

    PubMed  CAS  Google Scholar 

  • Hastings MH, O'Neill JS, Maywood ES (2007) Circadian clocks: regulators of endocrine and metabolic rhythms. J Endocrinol 195:187–198

    Article  PubMed  CAS  Google Scholar 

  • Kim C-Y, Han S-S (2006) Characteristics of home cage locomotion in cynomolgus monkeys. J Tox Sci 32:529–535

    Article  Google Scholar 

  • Kume K, Zylka MJ, Sriam S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205

    Article  PubMed  CAS  Google Scholar 

  • Lowrey PL, Swhimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, Menaker M, Takahashi JS (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288:483–490

    Article  PubMed  CAS  Google Scholar 

  • Meng Q-J, Logunova L, Maywood ES, Gallego M, Lebiecki J, Brown TM, Sládek M, Semikhodskii AS, Glossop NRJ, Piggins HD, Chesham JE, Bechtold DA, Yoo S-H, Takahashi JS, Virshup DM, Boot-Handford RP, Hastings MH, Loudon ASI (2008) Setting clock speed in mammals: the CK1ε tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58:78–88

    Article  PubMed  CAS  Google Scholar 

  • Moore RY (1993) Organization of the primate circadian system. J Biol Rhythms 8:S3–S9

    PubMed  Google Scholar 

  • Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Ann Rev Physiol 63:647–676

    Article  CAS  Google Scholar 

  • Roennenberg T, Chua EJ, Bernardo R, Mendoza E (2007) Modeling circadian rhythms. Curr Biol 17:R826–R835

    Google Scholar 

  • Sprouse J (2004) Pharmacological modulation of circadian rhythms: a new drug target in psychotherapeutics. Expert Opin Ther Targets 8:25–38

    Article  PubMed  CAS  Google Scholar 

  • Stratmann M, Schibler U (2006) Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J Biol Rhythms 21:494–506

    Article  PubMed  CAS  Google Scholar 

  • Sulzman FM, Fuller CA, Moore-Ede MC (1977) Environmental synchronizers of squirrel monkey circadian rhythms. J Appl Physiol 43:795–800

    PubMed  CAS  Google Scholar 

  • Sulzman FM, Fuller CA, Moore-Ede MC (1982) Circadian entrainment of the squirrel monkey by extreme photoperiods: interactions between the phasic and tonic effects of light. Physiol Behav 29:637–641

    Article  PubMed  CAS  Google Scholar 

  • Toh KL, Jones CR, He Y, Eide EJ, Hinz DM, Virshup DM, Ptacek LJ, Fu YH (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043

    Article  PubMed  CAS  Google Scholar 

  • Tokura H, Aschoff J (1979) Circadian rhythms of locomotor activity in the squirrel monkey, Saimiri sciureus, under conditions of self-controlled light-dark cycles. Jpn J Physiol 29:151–157

    PubMed  CAS  Google Scholar 

  • Turek FW (2007) From circadian rhythms to clock genes in depression. Int Clin Psychopharmacol 22(suppl 2):S1–S8

    Article  PubMed  Google Scholar 

  • Vielhaber E, Eide E, Gao Z-H, Virshup DM (2000) Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I ε. Mol Cell Biol 20:4888–4899

    Article  PubMed  CAS  Google Scholar 

  • Wirz-Justice A (2007) Chronobiology and psychiatry. Sleep Med Rev 11:423–427

    Article  PubMed  Google Scholar 

  • Wisor JP (2002) Disorders of the circadian clock: etiology and possible therapeutic targets. Curr Drug Targets CNS Neurol Disord 1:555–566

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptacek LJ, Fu Y-H (2005) Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature 434:640–644

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their thanks to the Non-Human Primate Staff of Comparative Medicine (Brett Greenland, Gwen Haggett, Carl Johnson, Christopher Olszewski, John Deschenes, Douglas Albot, Lori Clay, Terry Field Jr., John Aspinwall, Michael Birkbeck, Gerald McElwee, Robert Vuoto, Larry Matney, Michael LaBreque, Doug Pasqualini, Kevin Foss, Jodi Osowski, and Dr. Keith Fowler) for their assistance with the Cynomolgus monkeys in this study.

Conflicts of interest

During the time that this research was completed, all authors of this manuscript were receiving compensation as employees of Pfizer Inc. and/or possessed a financial holding in the company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Sprouse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprouse, J., Reynolds, L., Swanson, T.A. et al. Inhibition of casein kinase I ε/δ produces phase shifts in the circadian rhythms of Cynomolgus monkeys. Psychopharmacology 204, 735–742 (2009). https://doi.org/10.1007/s00213-009-1503-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1503-x

Keywords

Navigation