Skip to main content

Advertisement

Log in

Role of glutamate NMDA receptors and nitric oxide located within the periaqueductal gray on defensive behaviors in mice confronted by predator

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The midbrain periaqueductal gray (PAG) is part of the brain system involved in active defense reactions to threatening stimuli. Glutamate N-methyl-d-aspartate (NMDA) receptor activation within the dorsal column of the PAG (dPAG) leads to autonomic and behavioral responses characterized as the fear reaction. Nitric oxide (NO) has been proposed to be a mediator of the aversive action of glutamate, since the activation of NMDA receptors in the brain increases NO synthesis.

Objectives

We investigated the effects of intra-dPAG infusions of NMDA on defensive behaviors in mice pretreated with a neuronal nitric oxide synthase (nNOS) inhibitor [Nω-propyl-l-arginine (NPLA)], in the same midbrain site, during a confrontation with a predator in the rat exposure test (RET).

Materials and methods

Male Swiss mice received intra-dPAG injections of NPLA (0.1 or 0.4 nmol/0.1 μl), and 10 min later, they were infused with NMDA (0.04 nmol/0.1 μl) into the dPAG. After 10 min, each mouse was placed in the RET.

Results

NMDA treatment enhanced avoidance behavior from the predator and markedly increased freezing behavior. These proaversive effects of NMDA were prevented by prior injection of NPLA. Furthermore, defensive behaviors (e.g., avoidance, risk assessment, freezing) were consistently reduced by the highest dose of NPLA alone, suggesting an intrinsic effect of nitric oxide on defensive behavior in mice exposed to the RET.

Conclusions

These findings suggest a potential role of glutamate NMDA receptors and NO in the dPAG in the regulation of defensive behaviors in mice during a confrontation with a predator in the RET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguiar DC, De Lucca AC, Guimarães FS (2004) Role of nitric oxide on chemically-induced defensive reactions in the dorsolateral periaqueductal grey. Eur Neuropsychopharmacol 14(suppl. 3):S305

    Article  Google Scholar 

  • Bandler R, Carrive P (1988) Integrated defense reaction elicited by excitatory amino acid in the midbrain periaqueductal gray region of the unrestrained cat. Brain Res 439:95–106

    Article  PubMed  CAS  Google Scholar 

  • Bandler R, Depaulis A (1991) Midbrain periaqueductal gray control of defensive behavior in the cat and the rat. In: Bandler R, Depaulis A (eds) The midbrain periaqueductal gray matter: functional, anatomical and neurochemical organization. Plenum, New York, pp 175–197

    Google Scholar 

  • Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modulates for emotional expression? Trends Neurosci 17:379–389

    Article  PubMed  CAS  Google Scholar 

  • Bandler R, Carrive P, Zhang SP (1991) Integration of somatic autonomic reactions within the midbrain periaqueductal gray: viscerotopic, somatotopic and functional organization. Prog Brain Res 87:269–305

    Article  PubMed  CAS  Google Scholar 

  • Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Progress Neurobiol 46:575–605

    Article  CAS  Google Scholar 

  • Beijamini V, Guimarães FS (2006) c-Fos expression increase in NADPH-diaphorase positive neurons after exposure to a live cat. Behav Brain Res 170:52–61

    Article  PubMed  CAS  Google Scholar 

  • Bergink V, Van Megen HJGM, Westenberg HGM (2004) Glutamate and anxiety. Eur Neuropharmacol 14:175–183

    Article  CAS  Google Scholar 

  • Bertoglio LJ, Zangrossi H Jr (2006) Involvement of dorsolateral periaqueductal gray N-methyl-d-aspartic acid glutamate receptors in the regulation of risk assessment and inhibitory avoidance behaviors in the rat elevated T-maze. Behav Pharmacol 17:589–596

    Article  PubMed  CAS  Google Scholar 

  • Blanchard RJ, Hebert MA, Ferrari PF, Palanza P, Figueira R, Blanchard DC, Parmigiani S (1998) Defensive behaviors in wild and laboratory (Swiss) mice: the mouse defense test battery. Physiol Behav 65(2):201–209

    Article  PubMed  CAS  Google Scholar 

  • Calvo-Torrent A, Brain PF, Martinez M (1999) Effect of predatory stress on sucrose intake and behavior on the plus-maze in male mice. Physiol Behav 67:189–196

    Article  PubMed  CAS  Google Scholar 

  • Carobrez AP, Teixeira KV, Graeff FG (2001) Modulation of defensive behavior by periaqueductal gray NMDA/glycine-B receptor. Neurosci Biobehav Rev 25:697–709

    Article  PubMed  CAS  Google Scholar 

  • Carrive P (1993) The periaqueductal gray and defensive behavior: functional significance and neuronal organization. Behav Brain Res 58:27–47

    Article  PubMed  CAS  Google Scholar 

  • Carvalho-Netto EF, Markham C, Blanchard DC, Nunes-De-Souza RL, Blanchard RJ (2006) Physical environment modulates the behavioral responses induced by chemical stimulation of dorsal periaqueductal gray in mice. Pharmacol Biochem Behav 85:140–147

    Article  PubMed  CAS  Google Scholar 

  • Carvalho-Netto EF, Litvin Y, Nunes-De-Souza RL, Blanchard DC, Blanchard RJ (2007) Effects of intra-PAG infusion of ovine CRF on defensive behaviors in Swiss-Webster mice. Behav Brain Res 176:222–229

    Article  PubMed  CAS  Google Scholar 

  • De Oliveira RW, Guimarães FS (1999) Anxiolytic effect of methylene blue microinjected into the dorsal periaqueductal gray. Braz J Med Biol Res 32:1529–1532

    Google Scholar 

  • De Oliveira RW, Del Bel EA, Guimarães FS (2001) Effects of excitatory amino acids and nitric oxide on flight behavior elicited from the dorsolateral periaqueductal gray. Neurosci Biobehav Rev 25:679–685

    Article  PubMed  Google Scholar 

  • Esplugues J (2002) NO as a signalling molecule in the nervous system. Br J Pharmacol. 135:1079–1095

    Article  PubMed  CAS  Google Scholar 

  • Faria MS, Muscara MN, Moreno H Jr, Dias SA, Oliveira B, Graeff FG, De Nucci G (1997) Acute inhibition of nitric oxide synthesis induces anxiolysis in the plus maze test. Eur J Pharmacol 323:37–343

    Article  PubMed  CAS  Google Scholar 

  • Forestiero D, Manfrim CM, Guimarães FS, De Oliveira RM (2006) Anxiolytic-like effects induced by nitric oxide synthase inhibitors microinjected into the medial amygdala of rats. Psychopharmacology (Berl) 184:166–172

    Article  CAS  Google Scholar 

  • Garthwaite J (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 14:60–67

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J, Garthwaite G, Palmer RM, Moncada S (1989) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol 172:413–416

    Article  PubMed  CAS  Google Scholar 

  • Graeff FG (1981) Minor tranquilizers and brain defense system. Braz J Med Biol Res 14:239–265

    PubMed  CAS  Google Scholar 

  • Graeff FG (1994) Neuroanatomy and neurotransmitter regulation of defensive behaviors and related emotions in mammals. Braz J Med Biol Res 27(4):811–829

    PubMed  CAS  Google Scholar 

  • Graeff FG (2004) Serotonin, the periaqueductal gray and panic. Neurosci Biobehav Rev 28:239–259

    Article  PubMed  CAS  Google Scholar 

  • Guimarães FS, Carobrez AP, De Aguiar JC, Graeff FG (1991) Anxiolytic effect in the elevated plus maze of NMDA receptor antagonist AP 7 microinjected into the dorsal periaqueductal gray. Psychopharmacology (Berl) 103:91–94

    Article  Google Scholar 

  • Guimarães FS, De Aguiar JC, Del-Bel EA, Ballejo G (1994) Anxiolytic effect of NO synthase inhibitors microinjected into the dorsal central grey. Neuro Report 5:123–126

    Google Scholar 

  • Guimarães FS, Beijamini V, Moreira FA, Aguiar DC, De Luca ACB (2005) Role of nitric oxide on brain regions related to defensive reactions. Neurosci Biobehav Rev 29:1313–1322

    Article  PubMed  Google Scholar 

  • Lin HC, Kang BH, Wan FJ, Huang ST, Tseng CJ (2000) Reciprocal regulation of nitric oxide and glutamate in the nucleus tractus solitarii of rats. Eur J Pharmacol 407:83–89

    Article  PubMed  CAS  Google Scholar 

  • Litvin Y, Pentkowski NS, Blanchard DC, Blanchard RJ (2007) CRF type 1 receptors in the dorsal periaqueductal gray modulate anxiety-induced defensive behaviors. Horm Behav 52:244–251

    Article  PubMed  CAS  Google Scholar 

  • Litvin Y, Pentkowski NS, Pobbe RL, Blanchard DC, Blanchard RJ (2008) Unconditioned models of fear and anxiety. In: Blanchard DC, Blanchard RJ, Griebel G, Nutt D (eds) Handbook of anxiety and fear. Academic Press, Amsterdam, pp 82–99

    Google Scholar 

  • Lohse MJ, Forstermann U, Schmidt HHHW (1998) Pharmacology of NO: cGMP signal transduction. Naunyn-Schmiedeberg’s Arch Pharmacol 358:111–112

    Article  CAS  Google Scholar 

  • Lovick TA, Parry DM, Stezhka VV, Lumb BM (2000) Serotonergic transmission in the periaqueductal gray matter in relation to aversive behaviour: morphological evidence for direct modulatory effects on identified output neurons. Neurosci 95:763–772

    Article  CAS  Google Scholar 

  • Markham CM, Blanchard DC, Canteras NS, Cuyno CD, Blanchard RJ (2004) Modulation of predatory odor processing following lesions to the dorsal premammillary nucleus. Neurosci Lett. 372:22–26

    Article  PubMed  CAS  Google Scholar 

  • Martinez RC, Ribeiro De Oliveira A, Brandão ML (2007) Serotonergic mechanisms in the basolateral amygdala differentially regulate the conditioned and unconditioned fear organized in the periaqueductal gray. Eur Neuropychopharmacol 17:717–724

    Article  CAS  Google Scholar 

  • Martinez RC, Carvalho-Netto EF, Amaral VC, Nunes-de-Souza RL, Canteras NS (2008) Investigation of the hypothalamic defensive system in the mouse. Behav Brain Res 192(2):185–190

    Article  PubMed  Google Scholar 

  • Matheus MG, Nogueira RL, Carobrez AP, Graeff FG, Guimarães FS (1994) Anxiolytic effect of glycine antagonists microinjected into the dorsal periaqueductal grey. Psychopharmacology (Berl) 113:565–569

    Article  CAS  Google Scholar 

  • McNaughton N, Corr PJ (2004) A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neurosci Biobehav Rev 28:285–305

    Article  PubMed  Google Scholar 

  • Mendes-Gomes J, Nunes-De-Souza RL (2005) Concurrent nociceptive stimulation impairs the anxiolytic effect of midazolam injected into the periaqueductal gray in mice. Brain Res 1047:97–104

    Article  PubMed  CAS  Google Scholar 

  • Miguel TT, Nunes-De-Souza RL (2006) Defensive-like behaviors and antinociception induced by NMDA injection into the periaqueductal gray of mice depend on nitric oxide synthesis. Brain Res 1076:42–48

    Article  PubMed  CAS  Google Scholar 

  • Miguel TT, Nunes-De-Souza RL (2008) Anxiogenic-like effects induced by NMDA receptor activation are prevented by inhibition of neuronal nitric oxide synthase in the periaqueductal gray in mice. Brain Res 1240:39–46

    Article  PubMed  CAS  Google Scholar 

  • Molchanov ML, Guimarães FS (2002) Anxiolytic-like effects of AP7 injected into the dorsolateral or ventrolateral columns of the periaqueductal gray of rats. Psychopharmacology (Berl) 160:30–38

    Article  CAS  Google Scholar 

  • Moreira FA, Guimarães FS (2004) Benzodiazepine receptor and serotonin 2A receptor modulate the aversive-like effects of nitric oxide in the dorsolateral periaqueductal gray of rats. Psychopharmacology (Berl) 176:362–368

    Article  CAS  Google Scholar 

  • O’Boyle M (1974) Rats and mice together: the predatory nature of the rat’s mouse-killing response. Psychol Bull 81(4):261–269

    Article  PubMed  Google Scholar 

  • O’Boyle M (1975) The rat as a predator. Psychol Bull 82:460–462

    Article  Google Scholar 

  • Okada D (1992) Two pathways of cyclic GMP production through glutamate receptor-mediated nitric oxide synthesis. J Neurochem 59:1203–1210

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, California

    Google Scholar 

  • Reiser G (1990a) Mechanism of stimulation of cyclic-GMP level in a neuronal cell line mediated by serotonin (5-HT3) receptors. Involvement of nitric oxide, arachidonic-acid metabolism and cytosolic Ca2+. Eur J Biochem 189:547–552

    Article  PubMed  CAS  Google Scholar 

  • Reiser G (1990b) Endothelin and a Ca2+ ionophore raise cyclic GMP levels in a neuronal cell line via formation of nitric oxide. Br J Pharmacol 101:722–726

    PubMed  CAS  Google Scholar 

  • Santos P, Bittencourt AS, Schenberg LC, Carobrez AP (2006) Elevated T-maze evaluation of anxiety and memory effects of NMDA/glycine-B site ligands injected into the dorsal periaqueductal gray matter and the superior colliculus of rats. Neuropharmacol 51:203–212

    Article  CAS  Google Scholar 

  • Schenberg LC, Bittencourt AS, Sudré ECM, Vargas LC (2001) Modeling panic attacks. Neurosci Behav Rev 25:647–659

    CAS  Google Scholar 

  • Schmitt ML, Coelho W, Lopes-De-Souza AS, Guimarães FS, Carobrez AP (1995) Anxiogenic-like effect of glycine and D-serine microinjected into dorsal periaqueductal gray matter of rats. Neurosci Lett 189:93–96

    Article  PubMed  CAS  Google Scholar 

  • Southam E, East SJ, Garthwaite J (1991) Excitatory amino acid receptors coupled to the nitric oxide/cyclic GMP pathway in rat cerebellum during development. J Neurochem 56:2072–2081

    Article  PubMed  CAS  Google Scholar 

  • Spolidório PC, Echeverry MB, Iyomasa M, Guimarães FS, Del Bel EA (2007) Anxiolytic effects induced by inhibition of the nitric oxide-cGMP pathway in the rat dorsal hippocampus. Psychopharmacoly (Berl) 195:183–192

    Article  Google Scholar 

  • Teixeira KV, Carobrez AP (1999) Effects of glycine or (+/−)-3-amino-1-hydroxy-2-pyrrolidone microinjections along the rostrocaudal axis of the dorsal periaqueductal gray matter on rats’ performance in the elevated plus-maze task. Behav Neurosci 113:196–203

    Article  PubMed  CAS  Google Scholar 

  • Volke V, Soosaar A, Koks S, Bourin M, Mannisto PT (1995) Inhibition of nitric oxide synthase causes anxiolytic-like behavior in an elevated plus-maze. NeuroReport 6:1413–1416

    Article  PubMed  CAS  Google Scholar 

  • Volke V, Wegener G, Bourin M, Vasar E (2003) Antidepressant- and anxiolytic-like effects of selective neuronal NOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole in mice. Behav Brain Res 140:141–147

    Article  PubMed  CAS  Google Scholar 

  • Wegener G, Volke V, Rosenberg R (2000) Endogenous nitric oxide decreases hippocampal levels of serotonin and dopamine in vivo. Br J Pharmacol 130:575–580

    Article  PubMed  CAS  Google Scholar 

  • Whitton PS, Richards DA, Biggs CS, Fowler LJ (1994) N-methyl-d-aspartate receptors modulate extracellular 5-hydroxytryptamine concentration in rat hippocampus and striatum in vivo. Neurosci Lett 169:215–218

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Augustsson H, Markham C, Hubbard DT, Webster D, Wall PM, Blanchard RJ, Blanchard DC (2004) The rat exposure test: a model of mouse defensive behaviors. Physiol Behav 81:465–473

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Chris Markham (Center for Behavioral Neuroscience, Georgia State University) for suggestions and English corrections, Dr. João Ricardo Sato (University of ABC) for statistical assistance, as well as Elisabete Lepera and Rosana Silva for technical support. The study was supported by FAPESP, CNPq, and PADC/FCF-Unesp.

E. F. Carvalho-Netto was recipient of CAPES, K.S. Gomes was recipient of FAPESP and V.C.S. Amaral and R.L. Nunes-de-Souza were recipients of CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo L. Nunes-de-Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho-Netto, E.F., Gomes, K.S., Amaral, V.C.S. et al. Role of glutamate NMDA receptors and nitric oxide located within the periaqueductal gray on defensive behaviors in mice confronted by predator. Psychopharmacology 204, 617–625 (2009). https://doi.org/10.1007/s00213-009-1492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1492-9

Keywords

Navigation