Skip to main content
Log in

Asenapine elevates cortical dopamine, noradrenaline and serotonin release. Evidence for activation of cortical and subcortical dopamine systems by different mechanisms

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Asenapine, a psychopharmacologic agent developed for schizophrenia and bipolar disorder, has higher affinity for 5-HT2A/C,6,7 and α2 adrenergic receptors than for D2 receptors. Asenapine exhibits potent antipsychotic-like effects without inducing catalepsy, increases cortical and subcortical dopamine release, and facilitates cortical glutamatergic transmission in rats. In this study, we further analyzed the effects of asenapine on dopaminergic, noradrenergic, and serotonergic systems in the rat brain.

Materials and methods

We studied the effects of asenapine on (1) dopaminergic neurons in the ventral tegmental area (VTA) and noradrenergic neurons in the locus coeruleus using in vivo single cell recording, (2) release of dopamine and noradrenaline (medial prefrontal cortex), serotonin (frontal cortex), and dopamine (nucleus accumbens), using in vivo microdialysis.

Results

Systemic asenapine increased dopaminergic (0.001–0.2 mg/kg, i.v.) and noradrenergic (0.025–0.05 mg/kg i.v.) neuronal firing, and asenapine (0.1–0.2 mg/kg, s.c) increased cortical noradrenaline and serotonin output. Local asenapine administration increased all three monoamines in the cortex but did not affect accumbal dopamine output. Intra-VTA tetrodotoxin perfusion blocked asenapine-induced accumbal but not cortical dopamine outflow.

Conclusion

Asenapine at doses associated with antipsychotic activity enhanced cortical monoamine efflux. Whereas the asenapine-induced dopamine increase in nucleus accumbens is dependent on activation of dopaminergic neurons in the VTA, the increase of cortical dopamine outflow involves largely a local action at nerve terminals. Our data provide further insight on the pharmacologic characteristics of asenapine that may have bearing on its clinical efficacy in the treatment of schizophrenia and bipolar disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Van Heertum RL, Gorman JM, Laruelle M (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA 97:8104–8109

    Article  PubMed  CAS  Google Scholar 

  • Alves Fda S, Figee M, Vamelsvoort T, Veltman D, Haan L (2008) The revised dopamine hypothesis of schizophrenia: evidence from pharmacological MRI studies with atypical antipsychotic medication. Psychopharmacol Bull 41:121–132

    PubMed  Google Scholar 

  • Andersson JL, Marcus M, Nomikos GG, Svensson TH (1994) Prazosin modulates the changes in firing pattern and transmitter release induced by raclopride in the mesolimbic, but not in the nigrostriatal dopaminergic system. Naunyn-Schmiedebergs Arch Pharmacol 349:236–243

    PubMed  CAS  Google Scholar 

  • Andersson JL, Nomikos GG, Marcus M, Hertel P, Mathe JM, Svensson TH (1995) Ritanserin potentiates the stimulatory effects of raclopride on neuronal activity and dopamine release selectivity in the mesolimbic dopaminergic system. Naunyn-Schmiedebergs Arch Pharmacol 352:374–385

    PubMed  CAS  Google Scholar 

  • Broekkamp CL, De Graaf JS, van Delft AM (1990) Behavioural pharmacology of trans-5-chloro-2-methyl-2,3,3a,12b-tetrahydro-1H-dibenz[2,3:6,7]oxepino-[4,5- c]pyrrolidine maleate, a compound interacting with dopaminergic and serotonergic receptors. Arzneimittelforschung 40:544–549

    PubMed  CAS  Google Scholar 

  • Bunney BS, Walters JR, Roth RH, Aghajanian GK (1973) Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 185:560–571

    PubMed  CAS  Google Scholar 

  • Carboni E, Tanda GL, Frau R, Di Chiara G (1990) Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: evidence that dopamine is taken up in vivo by noradrenergic terminals. J Neurochem 55:1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Castner SA, Williams GV (2007) Tuning the engine of cognition: a focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain Cogn 63:94–122

    Article  PubMed  Google Scholar 

  • Castner SA, Williams GV, Goldman-Rakic PS (2000) Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 287:2020–2022

    Article  PubMed  CAS  Google Scholar 

  • Cooper JR, Bloom FB, Roth RH (2003) The biochemical basis of neuropharmacology. Oxford University Press, New York

    Google Scholar 

  • Costall B, Domeney AM, Kelly ME, Naylor RJ, Tomkins DM (1990) Actions of ORG 5222 as a novel psychotropic agent. Pharmacol Biochem Behav 35:607–615

    Article  PubMed  CAS  Google Scholar 

  • Davis JM, Chen N, Glick ID (2003) A meta-analysis of the efficacy of second-generation antipsychotics. Arch Gen Psychiatry 60:553–564

    Article  PubMed  CAS  Google Scholar 

  • Dennis T, L’Heureux R, Carter C, Scatton B (1987) Presynaptic alpha-2 adrenoceptors play a major role in the effects of idazoxan on cortical noradrenaline release (as measured by in vivo dialysis) in the rat. J Pharmacol Exp Ther 241:642–649

    PubMed  CAS  Google Scholar 

  • Devoto P, Flore G, Pani L, Gessa GL (2001) Evidence for co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex. Mol Psychiatry 6:657–664

    Article  PubMed  CAS  Google Scholar 

  • Devoto P, Flore G, Longu G, Pira L, Gessa GL (2003a) Origin of extracellular dopamine from dopamine and noradrenaline neurons in the medial prefrontal and occipital cortex. Synapse 50:200–205

    Article  PubMed  CAS  Google Scholar 

  • Devoto P, Flore G, Vacca G, Pira L, Arca A, Casu MA, Pani L, Gessa GL (2003b) Co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex induced by clozapine, the prototype atypical antipsychotic. Psychopharmacology (Berl) 167:79–84

    CAS  Google Scholar 

  • Di Giovanni G, De Deurwaerdere P, Di Mascio M, Di Matteo V, Esposito E, Spampinato U (1999) Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91:587–597

    Article  PubMed  Google Scholar 

  • Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E (1998) Selective blockade of serotonin2C/2B receptors enhances dopamine release in the rat nucleus accumbens. Neuropharmacology 37:265–272

    Article  PubMed  Google Scholar 

  • Dinan TG, Aston-Jones G (1984) Acute haloperidol increases impulse activity of brain noradrenergic neurons. Brain Res 307:359–362

    Article  PubMed  CAS  Google Scholar 

  • Emamian ES, Karayiorgou M, Gogos JA (2004) Decreased phosphorylation of NMDA receptor type 1 at serine 897 in brains of patients with Schizophrenia. J Neurosci 24:1561–1564

    Article  PubMed  CAS  Google Scholar 

  • Ferre S, Artigas F (1995) Clozapine decreases serotonin extracellular levels in the nucleus accumbens by a dopamine receptor-independent mechanism. Neurosci Lett 187:61–64

    Article  PubMed  CAS  Google Scholar 

  • Flemming K, Potkin SG, Binneman B, Keller D, Alphs L, Panagides J (2007) Effects of asenapine on cognitive function in acute schizophrenia: a placebo- and risperidone-controlled trial. Eur Neuropsychopharmacol 17:S467

    Article  Google Scholar 

  • Frånberg O, Wiker C, Marcus MM, Konradsson A, Jardemark K, Schilström B, Shahid M, Wong EH, Svensson TH (2008) Asenapine, a novel psychopharmacologic agent: preclinical evidence for clinical effects in schizophrenia. Psychopharmacology (Berl) 196:417–429

    Article  CAS  Google Scholar 

  • Gallager DW, Aghajanian GK (1976) Effect of antipsychotic drugs on the firing of dorsal raphe cells. I. Role of adrenergic system. Eur J Pharmacol 39:341–355

    Article  PubMed  CAS  Google Scholar 

  • Gelders YG (1989) Thymosthenic agents, a novel approach in the treatment of schizophrenia. Br J Psychiatry Suppl 5:33–36

    PubMed  Google Scholar 

  • Gelders Y, Vanden Bussche G, Reyntjens A, Janssen P (1986) Serotonin-S2 receptor blockers in the treatment of chronic schizophrenia. Clin Neuropharmacol 9:325–327

    Google Scholar 

  • Ghanbari R, El Mansari M, Blier P (2008) Characterization of the in vivo actions of asenapine at 5-HT1A, 5-HT2A and alpha-2a-adrenergic receptors in the rat brain. Schizophr Res 98:133–134

    Article  Google Scholar 

  • Goldman-Rakic PS, Muly EC III, Williams GV (2000) D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 31:295–301

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877–2890

    PubMed  CAS  Google Scholar 

  • Graham AW, Aghajanian GK (1971) Effects of amphetamine on single cell activity in a catecholamine nucleus, the locus coeruleus. Nature 234:100–102

    Article  PubMed  CAS  Google Scholar 

  • Grenhoff J, Svensson TH (1989) Clonidine modulates dopamine cell firing in rat ventral tegmental area. Eur J Pharmacol 165:11–18

    Article  PubMed  CAS  Google Scholar 

  • Grenhoff J, Svensson TH (1993) Prazosin modulates the firing pattern of dopamine neurons in rat ventral tegmental area. Eur J Pharmacol 233:79–84

    Article  PubMed  CAS  Google Scholar 

  • Grenhoff J, Aston-Jones G, Svensson TH (1986) Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiol Scand 128:351–358

    Article  PubMed  CAS  Google Scholar 

  • Hand TH, Hu XT, Wang RY (1987) Differential effects of acute clozapine and haloperidol on the activity of ventral tegmental (A10) and nigrostriatal (A9) dopamine neurons. Brain Res 415:257–269

    Article  PubMed  CAS  Google Scholar 

  • Hatcher PD, Brown VJ, Tait DS, Bate S, Overend P, Hagan JJ, Jones DN (2005) 5-HT6 receptor antagonists improve performance in an attentional set shifting task in rats. Psychopharmacology (Berl) 181:253–259

    Article  CAS  Google Scholar 

  • Hertel P, Nomikos GG, Schilstrom B, Arborelius L, Svensson TH (1997a) Risperidone dose-dependently increases extracellular concentrations of serotonin in the rat frontal cortex: role of alpha 2-adrenoceptor antagonism. Neuropsychopharmacology 17:44–55

    Article  PubMed  CAS  Google Scholar 

  • Hertel P, Nomikos GG, Svensson TH (1997b) Risperidone inhibits 5-hydroxytryptaminergic neuronal activity in the dorsal raphe nucleus by local release of 5-hydroxytryptamine. Br J Pharmacol 122:1639–1646

    Article  PubMed  CAS  Google Scholar 

  • Hertel P, Fagerquist MV, Svensson TH (1999a) Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by alpha2 adrenoceptor blockade. Science 286:105–107

    Article  PubMed  CAS  Google Scholar 

  • Hertel P, Nomikos GG, Svensson TH (1999b) Idazoxan preferentially increases dopamine output in the rat medial prefrontal cortex at the nerve terminal level. Eur J Psychopharmacol 371(2-3):153–158

    CAS  Google Scholar 

  • Hoffman DC, Donovan H (1995) Catalepsy as a rodent model for detecting antipsychotic drugs with extrapyramidal side effect liability. Psychopharmacology (Berl) 120:128–133

    Article  CAS  Google Scholar 

  • Huang M, Li Z, Dai J, Shahid M, Wong EH, Meltzer HY (2008) Asenapine increases dopamine, norepinephrine, and acetylcholine efflux in the rat medial prefrontal cortex and hippocampus. Neuropsychopharmacology 33:2934–2945

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa J, Kuroki T, Dai J, Meltzer HY (1998) Effect of antipsychotic drugs on extracellular serotonin levels in rat medial prefrontal cortex and nucleus accumbens. Eur J Pharmacol 351:163–171

    Article  PubMed  CAS  Google Scholar 

  • Jardemark K, Ninan I, Svensson TH, Wang RY (2002) Differential effects of atypical and typical antipsychotic drugs on NMDA-receptor-mediated neurotransmission in pyramidal cells of the rat medial prefrontla cortex. Nord J Psychiatry 56:20

    Google Scholar 

  • Kane J, Honigfeld G, Singer J, Meltzer H (1988) Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 45:789–796

    PubMed  CAS  Google Scholar 

  • Kondo Y, Iwatsubo K (1980) Diminished responses of nigral dopaminergic neurons to haloperidol and morphine following lesions in the striatum. Brain Res 181:237–240

    Article  PubMed  CAS  Google Scholar 

  • Kuroki T, Meltzer HY, Ichikawa J (1999) Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther 288:774–781

    PubMed  CAS  Google Scholar 

  • Lacroix LP, Dawson LA, Hagan JJ, Heidbreder CA (2004) 5-HT6 receptor antagonist SB-271046 enhances extracellular levels of monoamines in the rat medial prefrontal cortex. Synapse 51:158–164

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93:9235–9240

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Huang M, Prus AJ, Dai J, Meltzer HY (2007) 5-HT6 receptor antagonist SB-399885 potentiates haloperidol and risperidone-induced dopamine efflux in the medial prefrontal cortex or hippocampus. Brain Res 1134:70–78

    Article  PubMed  CAS  Google Scholar 

  • Lieben CK, Blokland A, Sik A, Sung E, van Nieuwenhuizen P, Schreiber R (2005) The selective 5-HT6 receptor antagonist Ro4368554 restores memory performance in cholinergic and serotonergic models of memory deficiency in the rat. Neuropsychopharmacology 30:2169–2179

    Article  PubMed  CAS  Google Scholar 

  • Liegeois JF, Ichikawa J, Meltzer HY (2002) 5-HT(2A) receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Res 947:157–165

    Article  PubMed  CAS  Google Scholar 

  • Litman RE, Hong WW, Weissman EM, Su TP, Potter WZ, Pickar D (1993) Idazoxan, an alpha 2 antagonist, augments fluphenazine in schizophrenic patients: a pilot study. J Clin Psychopharmacol 13:264–267

    Article  PubMed  CAS  Google Scholar 

  • Litman RE, Su TP, Potter WZ, Hong WW, Pickar D (1996) Idazoxan and response to typical neuroleptics in treatment-resistant schizophrenia. Comparison with the atypical neuroleptic, clozapine. Br J Psychiatry 168:571–579

    Article  PubMed  CAS  Google Scholar 

  • Marcus MM, Nomikos GG, Svensson TH (1996) Differential actions of typical and atypical antipsychotic drugs on dopamine release in the core and shell of the nucleus accumbens. Eur Neuropsychopharmacol 6:29–38

    Article  PubMed  CAS  Google Scholar 

  • Marcus MM, Nomikos GG, Svensson TH (2000) Effects of atypical antipsychotic drugs on dopamine output in the shell and core of the nucleus accumbens: role of 5-HT(2A) and alpha(1)-adrenoceptor antagonism. Eur Neuropsychopharmacol 10:245–253

    Article  PubMed  CAS  Google Scholar 

  • Marcus MM, Malmerfelt A, Nyberg S, Svensson T (2002) Biochemical effects in brain of low doses of haloperidol are qualitatively similar to those of high doses. Eur Neuropsychopharmacol 12:379

    Article  PubMed  CAS  Google Scholar 

  • Marcus MM, Jardemark KE, Wadenberg ML, Langlois X, Hertel P, Svensson TH (2005) Combined alpha2 and D2/3 receptor blockade enhances cortical glutamatergic transmission and reverses cognitive impairment in the rat. Int J Neuropsychopharmacol 8:315–327

    Article  PubMed  CAS  Google Scholar 

  • Marshall DL, Redfern PH, Wonnacott S (1997) Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem 68:1511–1519

    PubMed  CAS  Google Scholar 

  • Marston HM, Papp M, Martin FD, Gold LH, Shahid M, Wong EH (2007) Asenapine reverses anhedonia induced by chronic mild stress but displays no hedonic effects in an intracranial self-stimulation protocol. Schizophr Bull 33(2):531

    Google Scholar 

  • Melis M, Diana M, Gessa GL (1999) Clozapine potently stimulates mesocortical dopamine neurons. Eur J Pharmacol 366:R11–R13

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY, McGurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25:233–255

    PubMed  CAS  Google Scholar 

  • Millan MJ, Dekeyne A, Gobert A (1998) Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacology 37:953–955

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Gobert A, Lejeune F, Dekeyne A, Newman-Tancredi A, Pasteau V, Rivet JM, Cussac D (2003) The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther 306:954–964

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, Bunney BS (1990) Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study. J Neurochem 54:1755–1760

    Article  PubMed  CAS  Google Scholar 

  • Morrison PD, Pilowsky LS (2007) Schizophrenia: more evidence for less glutamate. Expert Review of Neurother 7:29–31

    Article  CAS  Google Scholar 

  • Neill JC, Idris NF, Roth RH, Marston H, Shahid M, Wong EH (2006) Asenapine: effects on a subchronic phencyclidine-induced reversal learning deficits in rats. Neuropsychopharmacolgy 31:175

    Google Scholar 

  • Nilsson LK, Schwieler L, Engberg G, Linderholm KR, Erhardt S (2005) Activation of noradrenergic locus coeruleus neurons by clozapine and haloperidol: involvement of glutamatergic mechanisms. Int J Neuropsychopharmacol 8:1–11

    Article  CAS  Google Scholar 

  • Ninan I, Jardemark KE, Wang RY (2003) Differential effects of atypical and typical antipsychotic drugs on N-methyl-D-aspartate- and electrically evoked responses in the pyramidal cells of the rat medial prefrontal cortex. Synapse 48:66–79

    Article  PubMed  CAS  Google Scholar 

  • Nomikos GG, Damsma G, Wenkstern D, Fibiger HC (1990) In vivo characterization of locally applied dopamine uptake inhibitors by striatal microdialysis. Synapse 6:106–112

    Article  PubMed  CAS  Google Scholar 

  • Nomikos GG, Iurlo M, Andersson JL, Kimura K, Svensson TH (1994) Systemic administration of amperozide, a new atypical antipsychotic drug, preferentially increases dopamine release in the rat medial prefrontal cortex. Psychopharmacology (Berl) 115:147–156

    Article  CAS  Google Scholar 

  • Nordström AL, Farde L, Nyberg S, Karlsson P, Halldin C, Sedvall G (1995) D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am J Psychiatry 152:1444–1449

    PubMed  Google Scholar 

  • Nutt DJ (1994) Putting the "A" in atypical: does alpha2-adrenoceptor antagonism account for the therapeutic advantage of new antipsychotics? J Psychopharmacol 8:193–195

    Article  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, San Diego, USA

    Google Scholar 

  • Potkin SG, Cohen M, Panagides J (2007) Efficacy and tolerability of asenapine in acute schizophrenia: a placebo- and risperidone-controlled trial. J Clin Psychiatry 68:1492–1500

    Article  PubMed  CAS  Google Scholar 

  • Pozzi L, Invernizzi R, Cervo L, Vallebuona F, Samanin R (1994) Evidence that extracellular concentrations of dopamine are regulated by noradrenergic neurons in the frontal cortex of rats. J Neurochem 63:195–200

    PubMed  CAS  Google Scholar 

  • Pucak ML, Grace AA (1994) Evidence that systemically administered dopamine antagonists activate dopamine neuron firing primarily by blockade of somatodendritic autoreceptors. J Pharmacol Exp Ther 271:1181–1192

    PubMed  CAS  Google Scholar 

  • Robinson TE, Camp DM (1991) The feasibility of repeated microdialysis for within-subject design experiments: studies on the mesocortical system. In: Robinson TE, Justce JB Jr (eds) Microdialysis in the neurosciences. Elsevier Science, Amsterdam, pp 789–234

    Google Scholar 

  • Schilström B, Nomikos GG, Nisell M, Hertel P, Svensson TH (1998) N-methyl-D-aspartate receptor antagonism in the ventral tegmental area diminishes the systemic nicotine-induced dopamine release in the nucleus accumbens. Neuroscience 82:781–789

    Article  PubMed  Google Scholar 

  • Schilström B, Ivanov VB, Wiker C, Svensson TH (2007) Galantamine enhances dopaminergic neurotransmission in vivo via allosteric potentiation of nicotinic acetylcholine receptors. Neuropsychopharmacology 32:43–53

    Article  PubMed  CAS  Google Scholar 

  • Schoffelmeer AN, Vanderschuren LJ, van Royen DE, Wardeh G, Hogenboom F, Mulder AH (1998) Lack of alpha2-adrenoceptor autoregulation of noradrenaline release in rat nucleus accumbens slices. Naunyn-Schmiedebergs Arch Pharmacol 357:87–90

    Article  PubMed  CAS  Google Scholar 

  • Shahid M, Walker GB, Zorn SH, Wong EH (2008) Asenapine: a novel psychopharmacologicagent with a unique human receptor signature. J Psychopharmacol doi:10.1177/0269881107082944

  • Souto M, Monti JM, Altier H (1979) Effects of clozapine on the activity of central dopaminergic and noradrenergic neurons. Pharmacol Biochem Behav 10:5–9

    Article  PubMed  CAS  Google Scholar 

  • Svensson TH (2003) Preclinical effects of conventional and atypical antipsychotic drugs: defining the mechanisms of action. Clin Neurosci Res 3:34–46

    Article  CAS  Google Scholar 

  • Tait DS, Marston HM, Shahid M, Brown VJ (2008) Asenapine restores cognitive flexibility in rats with medial prefrontal cortex lesions. Psychopharmacology doi:10.1007/s00213-008-1364-8

  • Toth E, Vizi ES, Lajtha A (1993) Effect of nicotine on levels of extracellular amino acids in regions of the rat brain in vivo. Neuropharmacology 32:827–832

    Article  PubMed  CAS  Google Scholar 

  • Ugedo L, Grenhoff J, Svensson TH (1989) Ritanserin, a 5-HT2 receptor antagonist, activates midbrain dopamine neurons by blocking serotonergic inhibition. Psychopharmacology (Berl) 98:45–50

    Article  CAS  Google Scholar 

  • Wadenberg ML, Hicks PB (1999) The conditioned avoidance response test re-evaluated: is it a sensitive test for the detection of potentially atypical antipsychotics? Neurosci Biobehav Rev 23:851–862

    Article  PubMed  CAS  Google Scholar 

  • Wadenberg ML, Salmi P, Jimenez P, Svensson T, Ahlenius S (1996) Enhancement of antipsychotic-like properties of the dopamine D2 receptor antagonist, raclopride, by the additional treatment with the 5-HT2 receptor blocking agent, ritanserin, in the rat. Eur Neuropsychopharmacol 6:305–310

    Article  PubMed  CAS  Google Scholar 

  • Wadenberg MG, Browning JL, Young KA, Hicks PB (2001) Antagonism at 5-HT(2A) receptors potentiates the effect of haloperidol in a conditioned avoidance response task in rats. Pharmacol Biochem Behav 68:363–370

    Article  PubMed  CAS  Google Scholar 

  • Wadenberg ML, Wiker C, Svensson TH (2007) Enhanced efficacy of both typical and atypical antipsychotic drugs by adjunctive alpha2 adrenoceptor blockade: experimental evidence. Int J Neuropsychopharmacol 10:191–202

    Article  PubMed  CAS  Google Scholar 

  • Wang RY (1981) Dopaminergic neurons in the rat ventral tegmental area. II. Evidence for autoregulation. Brain Res Brain Res Rev 3:123–140

    Article  CAS  Google Scholar 

  • Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, Berman KF, Goldberg TE (2001) Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 50:825–844

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto BK, Novotney S (1998) Regulation of extracellular dopamine by the norepinephrine transporter. J Neurochem 71:274–280

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Swedish Research Council (grant no. 4747), the Karolinska Institutet, and Schering-Plough. Dr Mohammed Shahid is an employee of Schering-Plough. We thank Mrs Anna Malmerfelt and Mrs Ann-Chatrine Samuelsson for skilful technical assistance. All experiments were approved by, and conducted in accordance with, the local Animal Ethics Committee, Stockholm North, and the Karolinska Institutet, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torgny H. Svensson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frånberg, O., Marcus, M.M., Ivanov, V. et al. Asenapine elevates cortical dopamine, noradrenaline and serotonin release. Evidence for activation of cortical and subcortical dopamine systems by different mechanisms. Psychopharmacology 204, 251–264 (2009). https://doi.org/10.1007/s00213-008-1456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1456-5

Keywords

Navigation