Skip to main content

Methylthioninium chloride reverses cognitive deficits induced by scopolamine: comparison with rivastigmine

Abstract

Rationale

The cholinergic system is involved in cognition as well as in age-related cognitive decline and Alzheimer disease (AD). Cholinergic enhancers ameliorate AD symptoms and represent the main current therapy for AD. MTC (Methylthioninium chloride), an antioxidant with metabolism-enhancing properties may be a novel candidate with pro-cognitive capacities.

Objectives

This study was performed: (1) to assess the pro-cognitive efficacy of MTC and establish its dose-response; (2) to compare the efficacy of MTC with rivastigmine and (3) to determine the potential for combination therapy by co-administration of MTC and rivastigmine.

Methods

Spatial cognition of female NMRI mice was tested in a reference memory water maze task. Subjects received intra-peritoneal injections of scopolamine (0.5 mg/kg) followed by vehicle, and/or MTC and/or rivastigmine (0.15–4 mg/kg MTC; 0.1–0.5 mg/kg rivastigmine) in mono or combination treatment.

Results

Scopolamine treatment prevented spatial learning in NMRI female mice and the deficit was reversed by both rivastigmine and MTC in a dose-dependent manner. Mono-therapy with high doses of rivastigmine (>0.5 mg/kg) caused severe side effects but MTC was safe up to 4 mg/kg. Co-administration of sub-effective doses of both drugs acted synergistically in reversing learning deficits and scopolamine-induced memory impairments.

Conclusions

In our model, MTC reversed the spatial learning impairment. When combined with the ChEI rivastigmine, the effect of MTC appeared to be amplified indicating that combination therapy could potentially improve not only symptoms but also contribute beneficially to neuronal metabolism by minimising side effects at lower doses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. AD2000 Collaborative Group (2004) Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trial. Lancet 363:2105–2115

    Article  CAS  Google Scholar 

  2. Arnaiz E, Jelic V, Almkvist O, Wahlund LO, Winblad B, Valind S, Nordberg A (2001) Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment. Neuroreport 12:851–855

    PubMed  Article  CAS  Google Scholar 

  3. Ballard TM, McAllister KH (1999) The acetylcholinesterase inhibitor, ENA 713 (Exelon), attenuates the working memory impairment induced by scopolamine in an operant DNMTP task in rats. Psychopharmacology (Berl) 146(1):10–18

    Article  CAS  Google Scholar 

  4. Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414

    PubMed  Article  CAS  Google Scholar 

  5. Beglinger LJ, Gaydos BL, Kareken DA, Tangphao-Daniels O, Siemers ER, Mohs RC (2004) Neuropsychological test performance in healthy volunteers before and after donepezil administration. J Psychopharmacolar 18(1):102–108

    Article  CAS  Google Scholar 

  6. Beglinger LJ, Tangphao-Daniels O, Kareken DA, Zhang L, Mohs R, Siemers ER (2005) Neuropsychological test performance in healthy elderly volunteers before and after donepezil administration: a randomized, controlled study. J Clin Psychopharmacol 25(2):159–165

    PubMed  Article  CAS  Google Scholar 

  7. Bejar C, Wang RH, Weinstock M (1999) Effect of rivastigmine on scopolamine-induced memory impairment in rats. Eur J Pharmacol 383(3):231–240

    PubMed  Article  CAS  Google Scholar 

  8. Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database of Systematic Reviews Issue 1, Article No. CD005593

  9. Blokland A (1998) Involvement of striatal cholinergic receptors in reaction time and fixed interval responding in rats. Brain Res Bull 45:21–25

    PubMed  Article  CAS  Google Scholar 

  10. Braida D, Paladini E, Griffini P, Lamperti M, Maggi A, Sala M (1996) An inverted U-shaped curve for heptylphysostigmine on radial maze performance in rats: comparison with other cholinesterase inhibitors. Eur J Pharmacol 302:13–20

    PubMed  Article  CAS  Google Scholar 

  11. Buxton A, Callan OA, Blatt EJ, Wong EH, Fontana DJ (1994) Cholinergic agents and delay-dependent performance in the rat. Pharmacol Biochem Behav 49(4):1067–1073

    PubMed  Article  CAS  Google Scholar 

  12. Cachard-Chastel M, Devers S, Sicsic S, Langlois M, Lezoualc’h F, Gardier AM, Belzung C (2008) Prucalopride and donepezil act synergistically to reverse scopolamine-induced memory deficit in C57Bl/6j mice. Behav Brain Res 187(2):455–461

    PubMed  Article  CAS  Google Scholar 

  13. Callaway NL, Riha PD, Wrubel KM, McCollum D, Gonzalez-Lima F (2002) Methylene blue restores spatial memory retention impaired by an inhibitor of cytochrome oxidase in rats. Neurosci Lett 332(2):83–86

    PubMed  Article  CAS  Google Scholar 

  14. Callaway NL, Riha PD, Bruchey AK, Munshi Z, Gonzalez-Lima F (2004) Methylene blue improves brain oxidative metabolism and memory retention in rats. Pharmacol Biochem Behav 77(1):175–181

    PubMed  Article  CAS  Google Scholar 

  15. Chen Z, Xu AJ, Li R, Wei EQ (2002) Reversal of scopolamine-induced spatial memory deficits in rats by TAK-147. Acta Pharmacol Sin 23(4):355–360

    PubMed  CAS  Google Scholar 

  16. de Angelis L, Furlan C (1995) The effects of ascorbic acid and oxiracetam on scopolamine-induced amnesia in a habituation test in aged mice. Nuerobiol Learn Mem 64(2):119–124

    Article  Google Scholar 

  17. de Bruin N, Pouzet B (2006) Beneficial effects of galantamine on performance in the object recognition task in Swiss mice: deficits induced by scopolamine and by prolonging the retention interval. Pharmacol Biochem Behav 85(1):253–260

    PubMed  Article  CAS  Google Scholar 

  18. De Leon MJ, Harris SH, George AE, Reisberg B, Christman DR, Kricheff II, Wolf AP (1983) Computed tomography and positron emission transaxial tomography evaluation of normal aging and Alzheimer’s disease. J Cereb Blood Flow Metab 3:391–394

    PubMed  Google Scholar 

  19. Deutsch SI, Rosse RB, Paul SM, Tomasino V, Koetzner L, Morn CB, Mastropaolo J (1996) 7-Nitroindazole and methylene blue, inhibitors of neuronal nitric oxide synthase and NO-stimulated guanylate cyclase, block MK-801-elicited behaviors in mice. Neuropsychopharmacology 15(1):37–43

    PubMed  Article  CAS  Google Scholar 

  20. Drachman DA, Leavitt J (1974) Human memory and the cholinergic system: a relationship to aging? Arch Neurol 30:113–121

    PubMed  CAS  Google Scholar 

  21. El-Sherbiny DA, Khalifa AE, Attia AS, Eldenshary Eel D (2003) Hypericum perforatum extract demonstrates antioxidant properties against elevated rat brain oxidative status induced by amnestic dose of scopolamine. Pharmacol Biochem Behav 76:525–533

    PubMed  Article  CAS  Google Scholar 

  22. Eriksson P, Fredriksson A (1991) Neurotoxic effects of two different pyrethroids, bioallethrin and deltamethrin, on immature and adult mice: changes in behavioral and muscarinic receptor variables. Toxicol Appl Pharmacol 108(1):78–85

    PubMed  Article  CAS  Google Scholar 

  23. Eriksson TM, Madjid N, Elvander-Tottie E, Stiedl O, Svenningsson P, Ogren SO (2008) Blockade of 5-HT(1B) receptors facilitates contextual aversive learning in mice by disinhibition of cholinergic and glutamatergic neurotransmission. Neuropharmacology 54(7):1041–1050

    PubMed  Article  CAS  Google Scholar 

  24. Espinosa-Raya J, Espinoza-Fonseca M, Picazo O, Trujillo-Ferrara J (2007) Effect of a M1 allosteric modulator on scopolamine-induced amnesia. Med Chem 3(1):7–11

    PubMed  Article  CAS  Google Scholar 

  25. Fan Y, Hu J, Li J, Yang Z, Xin X, Wang J, Ding J, Geng M (2005) Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci Lett 374:222–226

    PubMed  Article  CAS  Google Scholar 

  26. Gibson GE, Blass JP (1976) Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycaemia. J Neurochem 27:37–42

    PubMed  Article  CAS  Google Scholar 

  27. Gonzalez-Lima F, Bruchey AK (2004) Extinction memory improvement by the metabolic enhancer methylene blue. Learn Mem 11(5):633–640

    PubMed  Article  CAS  Google Scholar 

  28. Gonzalez-Lima F, Valla J, Matos-Collazo S (1997) Quantitative cytochemistry of cytochrome oxidase and cellular morphometry of the human inferior colliculus in control and Alzheimer’s patients. Brain Res 752:117–126

    PubMed  Article  CAS  Google Scholar 

  29. Han CJ, Pierre-Louis J, Scheff A, Robinson JK (2000) A performance-dependent adjustment of the retention interval in a delayed non-matching-to-position paradigm differentiates effects of amnestic drugs in rats. Eur J Pharmacol 403(1–2):87–93

    PubMed  Article  CAS  Google Scholar 

  30. Hulme EC, Lu ZL, Saldanha JW, Bee MS (2003) Structure and activation of muscarinic acetylcholine receptors. Biochem Soc Trans 31(Pt 1):29–34

    PubMed  CAS  Google Scholar 

  31. Ito T, Akiyama N, Ogawa T, Satake T, Kato T, Sugiyama S, Ozawa T (1989) Changes in myocardial mitochondrial electron transport activity in rats administered with acetylcholinesterase inhibitor. Biochem Biophys Res Commun 164(3):997–1002

    PubMed  Article  CAS  Google Scholar 

  32. Janas AM, Cunningham SC, Duffy KB, Devan BD, Greig NH, Holloway HW, Yu QS, Markowska AL, Ingram DK, Spangler EL (2005) The cholinesterase inhibitor, phenserine, improves Morris water maze performance of scopolamine-treated rats. Life Sci 76(10):1073–1081

    PubMed  Article  CAS  Google Scholar 

  33. Kaduszkiewicz H, Zimmermann T, Beck-Bornholdt HP, van den Bussche H (2005) Cholinesterase inhibitors for patients with Alzheimer’s disease: systematic review of randomised clinical trials. BMJ 331:321–327

    PubMed  Article  CAS  Google Scholar 

  34. Kim DH, Hung TM, Bae KH, Jung JW, Lee S, Yoon BH, Cheong JH, Ko KH, Ryu JH (2006) Gomisin A improves scopolamine-induced memory impairment in mice. Eur J Pharmacol 542(1–3):129–135

    PubMed  Article  CAS  Google Scholar 

  35. Kim DH, Jeon SJ, Son KH, Jung JW, Lee S, Yoon BH, Lee JJ, Cho YW, Cheong JH, Ko KH, Ryu JH (2007) The ameliorating effect of oroxylin A on scopolamine-induced memory impairment in mice. Neurobiol Learn Mem 87(4):536–546

    PubMed  Article  CAS  Google Scholar 

  36. Kish SJ, Bergeron C, Rajput A, Dozic S, Mastrogiacomo F, Chang LJ, Wilson JM, DiStefano LM, Nobrega JN (1992) Brain cytochrome oxidase in Alzheimer’s disease. J Neurochem 59:776–779

    PubMed  Article  CAS  Google Scholar 

  37. Klapdor K, van der Staay FJ (1996) The Morris water-escape task in mice: strain differences and effects of intra-maze contrast and brightness. Physiol Behav 60(5):1247–1254

    PubMed  Article  CAS  Google Scholar 

  38. Krügel U, Bigl V, Eschrich K, Bigl M (2001) Deafferentation of the septo-hippocampal pathway in rats as a model of the metabolic events in Alzheimer’s disease. Int J Dev Neurosci 19(3):263–277

    PubMed  Article  Google Scholar 

  39. Lamberty Y, Gower AJ (1988) Investigation into sex-related differences in locomotor activity, place learning and passive avoidance responding in NMRI mice. Physiol Behav 44(6):787–790

    PubMed  Article  CAS  Google Scholar 

  40. Lamberty Y, Gower AJ (1990) Age-related changes in spontaneous behavior and learning in NMRI mice from maturity to middle age. Physiol Behav 47(6):1137–1144

    PubMed  Article  CAS  Google Scholar 

  41. Lamberty Y, Gower AJ (1991) Simplifying environmental cues in a Morris-type water maze improves place learning in old NMRI mice. Behav Neural Bioll 56(1):89–100

    Article  CAS  Google Scholar 

  42. Lamberty Y, Gower AJ (1993) Spatial processing and emotionality in aged NMRI mice: a multivariate analysis. Physiol Behav 54(2):339–343

    PubMed  Article  CAS  Google Scholar 

  43. Lamberty Y, Gower AJ, Gobert J, Hanin I, Wulfert E (1992) Behavioural, biochemical and histological effects of AF64A following injection into the third ventricle of the mouse. Behav Brain Res 51(2):165–177

    PubMed  Article  CAS  Google Scholar 

  44. Lee KY, Jeong EJ, Lee HS, Kim YC (2006) Acteoside of Callicarpa dichotoma attenuates scopolamine-induced memory impairments. Biol Pharm Bull 29(1):71–74

    PubMed  Article  CAS  Google Scholar 

  45. Lee JH, Park SY, Shin YW, Kim CD, Lee WS, Hong KW (2007) Concurrent administration of cilostazol with donepezil effectively improves cognitive dysfunction with increased neuroprotection after chronic cerebral hypoperfusion in rats. Brain Res 1185:246–255

    PubMed  Article  CAS  Google Scholar 

  46. Lindner MD, Hogan JB, Hodges DB Jr, Orie AF, Chen P, Corsa JA, Leet JE, Gillman KW, Rose GM, Jones KM, Gribkoff VK (2006) Donepezil primarily attenuates scopolamine-induced deficits in psychomotor function, with moderate effects on simple conditioning and attention, and small effects on working memory and spatial mapping. Psychopharmacology (Berl) 188(4):629–640

    Article  CAS  Google Scholar 

  47. Martinez JL Jr, Jensen RA, Vasquez BJ, McGuinness T, McGaugh JL (1978) Methylene blue alters retention of inhibitory avoidance responses. Physiol Psychol 6:387–390

    CAS  Google Scholar 

  48. Micheau J, Messier C, Jaffard R (1995) Glucose enhancement of scopolamine-induced increase of hippocampal high-affinity choline uptake in mice: relation to plasma glucose levels. Brain Res 685(1–2):99–104

    PubMed  Article  CAS  Google Scholar 

  49. Micheau J, Riedel G, Roloff EL, Inglis J, Morris RG (2004) Reversible hippocampal inactivation partially dissociates how and where to search in the water maze. Behav Neurosci 118(5):1022–1032

    PubMed  Article  CAS  Google Scholar 

  50. Milivojevic N, Babic K, Milatovic D, Dettbarn WD, Sket D, Zivin M (2001) N-tert-butyl-alpha-phenylnitrone, a free radical scavenger with anticholinesterase activity does not improve the cognitive performance of scopolamine-challenged rats. Int J Dev Neurosci 19(3):319–325

    PubMed  Article  CAS  Google Scholar 

  51. Moragrega I, Carrasco MC, Vicens P, Redolat R (2002) Motor activity in group-housed and isolated mice with short and long attack latencies: effects of scopolamine. Aggress Behav 28(4):328–336

    Article  Google Scholar 

  52. Mowla A, Mosavinasab M, Haghshenas H, Haghighi AB (2007) Does serotonin augmentation have any effect on cognition and activities of daily living in Alzheimer’s dementia? A double-blind, placebo-controlled clinical trial. J Clin Psychopharmacol 27(5):484–487

    PubMed  Article  CAS  Google Scholar 

  53. Noda Y, Ochi Y, Shimada E, Oka M (1991) Involvement of central cholinergic mechanism in RU-24969-induced behavioral deficits. Pharmacol Biochem Behav 38(2):441–446

    PubMed  Article  CAS  Google Scholar 

  54. Ostrovskaya RU, Gruden MA, Bobkova NA, Sewell RD, Gudasheva TA, Samokhin AN, Seredinin SB, Noppe W, Sherstnev VV, Morozova-Roche LA (2007) The nootropic and neuroprotective proline-containing dipeptide noopept restores spatial memory and increases immunoreactivity to amyloid in an Alzheimer’s disease model. J Psychopharmacol 21(6):611–619

    PubMed  Article  CAS  Google Scholar 

  55. Parkes M, White KG (2000) Glucose attenuation of memory impairments. Behav Neurosci 114(2):307–319

    PubMed  Article  CAS  Google Scholar 

  56. Parle M, Dhingra D (2003) Ascorbic Acid: a promising memory-enhancer in mice. J Pharmacol Sci 93(2):129–135

    PubMed  Article  CAS  Google Scholar 

  57. Parsons MW, Gold PE (1992) Scopolamine-induced deficits in spontaneous alternation performance: attenuation with lateral ventricle injections of glucose. Behav Neural Biol 57(1):90–92

    PubMed  Article  CAS  Google Scholar 

  58. Pepeu G, Giovannini MG (2004) Changes in acetylcholine extracellular levels during cognitive processes. Learn Mem 11(1):21–27

    PubMed  Article  Google Scholar 

  59. Pfaffendorf M, Bruning TA, Batnik HD, van Zwieten PA (1997) The interaction between methylene blue and the cholinergic system. Br J Pharmacol 122(1):95–98

    PubMed  Article  CAS  Google Scholar 

  60. Rasmussen T, Fink-Jensen A (2000) Intravenous scopolamine is potently self-administered in drug-naive mice. Neuropsychopharmacology 22(1):97–99

    PubMed  Article  CAS  Google Scholar 

  61. Reddy PH (2007) Mitochondrial dysfunction in aging and Alzheimer’s disease: strategies to protect neurons. Antioxid Redox Signal 9(10):1647–1658

    PubMed  Article  CAS  Google Scholar 

  62. Riedel W, Lang U, Oetjen U, Schlapp U, Shibata M (2003) Inhibition of oxygen radical formation by methylene blue, aspirin, or alpha-lipoic acid, prevents bacterial-lipopolysaccharide-induced fever. Mol Cell Biochem 247(1–2):83–94

    PubMed  Article  CAS  Google Scholar 

  63. Riepe MW, Adler G, Ibach B, Weinkauf B, Tracik F, Gunay I (2007) Domain-specific improvement of cognition on memantine in patients with Alzheimer’s disease treated with rivastigmine. Dement Geriatr Cogn Disord 23(5):301–306

    PubMed  Article  CAS  Google Scholar 

  64. Robinson L, Harbaran D, Riedel G (2004) Visual acuity in the water maze: sensitivity to muscarinic receptor blockade in rats and mice. Behav Brain Res 151(1–2):277–286

    PubMed  Article  CAS  Google Scholar 

  65. Roloff EvL, Harbaran D, Micheau J, Platt B, Riedel G (2007) Dissociation of cholinergic function in spatial and procedural learning in rats. Neuroscience 146(3):875–889

    Article  CAS  Google Scholar 

  66. Salaris SC, Babbs CF, Voorhees WD 3rd (1991) Methylene blue as an inhibitor of superoxide generation by xanthine oxidase A potential new drug for the attenuation of ischemia/reperfusion injury. Biochem Pharmacol 42(3):499–506

    PubMed  Article  CAS  Google Scholar 

  67. Scarpini E, Scheltens P, Feldman H (2003) Treatment of Alzheimer’s disease: current status and new perspectives. Lancet Neurol 2:539–547

    PubMed  Article  CAS  Google Scholar 

  68. Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY, Lavretsky H, Miller K, Siddarth P, Rasgon NL, Mazziotta JC, Saxena S, Wu HM, Mega MS, Cummings JL, Saunders AM, Pericak-Vance MA, Roses AD, Barrio JR, Phelps ME (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci 97:6037–6042

    PubMed  Article  CAS  Google Scholar 

  69. Smythe JW, Murphy D, Bhatnagar S, Timothy C, Costall B (1996) Muscarinic antagonists are anxiogenic in rats tested in the black-white box. Pharmacol Biochem Behav 54(1):57–63

    PubMed  Article  CAS  Google Scholar 

  70. Steckler T, Holsboer F (2001) Interaction between the cholinergic system and CRH in the modulation of spatial discrimination learning in mice. Brain Res 906(1–2):46–59

    PubMed  Article  CAS  Google Scholar 

  71. Takahata K, Minami A, Kusumoto H, Shimazu S, Yoneda F (2005) Effects of selegiline alone or with donepezil on memory impairment in rats. Eur J Pharmacol 518(2–3):140–144

    PubMed  Article  CAS  Google Scholar 

  72. Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I (2004) Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 291(3):317–324

    PubMed  Article  CAS  Google Scholar 

  73. Terry AV Jr, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827

    PubMed  Article  CAS  Google Scholar 

  74. Valla J, Berndt JD, Gonzalez-Lima F (2001) Energy hypometabolism in posterior cingulate cortex of Alzheimer’s patients: superficial laminar cytochrome oxidase associated with disease duration. J Neurosci 21:4923–4930

    PubMed  CAS  Google Scholar 

  75. Van Dam D, Abramowski D, Staufenbiel M, De Deyn PP (2005) Symptomatic effect of donepezil, rivastigmine, galantamine and memantine on cognitive deficits in the APP23 model. Psychopharmacology (Berl) 180(1):177–190

    Article  CAS  Google Scholar 

  76. Van Dam D, Coen K, De Deyn PP (2008) Cognitive evaluation of disease-modifying efficacy of donepezil in the APP23 mouse model for Alzheimer’s disease. Psychopharmacology (Berl) 197(1):37–43

    Article  CAS  Google Scholar 

  77. van der Heyden JA, Molewijk E, Olivier B (1987) Strain differences in response to drugs in the tail suspension test for antidepressant activity. Psychopharmacology (Berl) 92(1):127–130

    Article  Google Scholar 

  78. Van der Zee EA, Luiten PG (1999) Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Prog Neurobiol 58:409–471

    PubMed  Article  Google Scholar 

  79. Vicens P, Bernal MC, Carrasco MC, Redolat R (1999) Previous training in the water maze: differential effects in NMRI and C57BL mice. Physiol Behav 67(2):197–203

    PubMed  Article  CAS  Google Scholar 

  80. Vicens P, Redolat R, Carrasco MC (2002) Effects of early spatial training on water maze performance: a longitudinal study in mice. Exp Gerontol 37(4):575–581

    PubMed  Article  CAS  Google Scholar 

  81. Volke V, Wegener G, Vasar E, Rosenberg R (1999) Methylene blue inhibits hippocampal nitric oxide synthase activity in vivo. Brain Res 826(2):303–305

    PubMed  Article  CAS  Google Scholar 

  82. Wischik CM, Edwards PC, Lai RY, Roth M, Harrington CR (1996) Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci USA 93(20):11213–11218

    PubMed  Article  CAS  Google Scholar 

  83. Wrubel KM, Riha PD, Maldonado MA, McCollum D, Gonzalez-Lima F (2007) The brain metabolic enhancer methylene blue improves discrimination learning in rats. Pharmacol Biochem Behav 86(4):712–717

    PubMed  Article  CAS  Google Scholar 

  84. Yilmazer-Hanke DM, Roskoden T, Zilles K, Schwegler H (2003) Anxiety-related behavior and densities of glutamate, GABAA, acetylcholine and serotonin receptors in the amygdala of seven inbred mouse strains. Behav Brain Res 145(1–2):145–159

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by TauRx Therapeutics Ltd., Singapore.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gernot Riedel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deiana, S., Harrington, C.R., Wischik, C.M. et al. Methylthioninium chloride reverses cognitive deficits induced by scopolamine: comparison with rivastigmine. Psychopharmacology 202, 53 (2009). https://doi.org/10.1007/s00213-008-1394-2

Download citation

Keywords

  • Methylthioninium chloride
  • Methylene blue
  • Rivastigmine
  • Scopolamine
  • Water maze
  • Amnesia
  • Combination study
  • Synergy
  • Acetylcholine receptor
  • Spatial learning
  • NMRI mouse
  • Cognitive enhancer