Skip to main content

Advertisement

Log in

Galantamine-induced improvements in cognitive function are not related to alterations in α4β2 nicotinic receptors in early Alzheimer’s disease as measured in vivo by 2-[18F]Fluoro-A-85380 PET

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

The nicotinic acetylcholine receptor (nAChR) system plays a regulatory role in a number of cognitive processes. Cholinesterase inhibitors (i.e., galantamine) that potentiate cholinergic neurotransmission improve cognitive function in Alzheimer’s disease (AD); however, the relationship between these effects and associated changes in nAChRs are yet to be established in vivo.

Materials and methods

2-[18F]Fluoro-A-85380 (2-FA) binds to nAChRs and with positron emission tomography (PET) imaging provides a composite measure of receptor density and ligand affinity. This study aimed to: (1) quantify nAChRs in vivo in 15 drug-naïve patients with mild AD before and after chronic treatment with galantamine, using 2-FA and PET, and (2) examine the relationship between treatment-induced changes in nAChRs and improvements in cognitive function. Participants were nonsmokers and underwent extensive cognitive testing and a PET scan after injection of ∼200 MBq of 2-FA on two occasions (before and after 12 weeks, galantamine treatment). A 3-day washout period preceded the second scan. Brain regional 2-FA binding was assessed through a simplified estimation of distribution volume (DVS).

Results

Performance on global measures of cognition significantly improved following galantamine treatment (p < 0.05). This improvement extended to specific cognitive measures of language and verbal learning. No significant differences in nAChR DVS before and after galantamine treatment were found. The treatment-induced improvement in cognition was not correlated with regional or global nAChR DVS, suggesting that changes in nAChRs may not be responsible for the improvements in cognition following galantamine in patients with mild AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdulla FA, Bradbury E, Calaminici MR, Lippiello PM, Wonnacott S, Gray JA, Sinden JD (1996) Relationship between up-regulation of nicotine binding sites in rat brain and delayed cognitive enhancement observed after chronic or acute nicotinic receptor stimulation. Psychopharmacology (Berl) 124(4):323–331

    CAS  Google Scholar 

  • Abrahams S, Goldstein LH, Simmons A, Brammer MJ, Williams SC, Giampietro VP, Andrew CM, Leigh PN (2003) Functional magnetic resonance imaging of verbal fluency and confrontation naming using compressed image acquisition to permit overt responses. Hum Brain Mapp 20(1):29–40

    PubMed  Google Scholar 

  • Altamura M, Elvevag B, Blasi G, Bertolino A, Callicott JH, Weinberger DR, Mattay VS, Goldberg TE (2007) Dissociating the effects of Sternberg working memory demands in prefrontal cortex. Psychiatry Res 154(2):103–114

    PubMed  Google Scholar 

  • Amunts K, Weiss PH, Mohlberg H, Pieperhoff P, Eickhoff S, Gurd JM, Marshall JC, Shah NJ, Fink GR, Zilles K (2004) Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—the roles of Brodmann areas 44 and 45. Neuroimage 22(1):42–56

    PubMed  Google Scholar 

  • Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebral Cortex 1(1):103–116

    PubMed  CAS  Google Scholar 

  • Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68(3):209–245

    PubMed  CAS  Google Scholar 

  • Ball MJ (1977) Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathologica (Berl) 37(2):111–118

    CAS  Google Scholar 

  • Barnes CA, Meltzer J, Houston F, Orr G, McGann K, Wenk GL (2000) Chronic treatment of old rats with donepezil or galantamine: effects on memory, hippocampal plasticity and nicotinic receptors. Neuroscience 99(1):17–23

    PubMed  CAS  Google Scholar 

  • Barrantes GE, Rogers AT, Lindstrom J, Wonnacott S (1995) alpha-Bungarotoxin binding sites in rat hippocampal and cortical cultures: initial characterisation, colocalisation with alpha 7 subunits and up-regulation by chronic nicotine treatment. Brain Res 672(1–2):228–236

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science, 217(4558):408–414

    CAS  Google Scholar 

  • Benedict RH, Schretlen D, Groninger L, Brandt J (1998) Hopkins Verbal Learning Test-Revised: normative data and analysis of inter-form and test–retest reliability. Clin Neuropsychol 12:43–55

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J R Stat Soc [Ser B] 57(1):289–300

    Google Scholar 

  • Benton AL (1968) Differential behavioural effects of frontal lobe disease. Neuropsychologia 6:53–60

    Google Scholar 

  • Benton AL, Hamsher K (1976) Multilingual aphasia examination. University of Iowa, Iowa City

    Google Scholar 

  • Berg L, McKeel DW Jr, Miller JP, Storandt M, Rubin EH, Morris JC, Baty J, Coats M, Norton J, Goate AM, Price JL, Gearing M, Mirra SS, Saunders AM (1998) Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Arch Neurol 55(3):326–335

    PubMed  CAS  Google Scholar 

  • Bhat RV, Turner SL, Selvaag SR, Marks MJ, Collins AC (1991) Regulation of brain nicotinic receptors by chronic agonist infusion. J Neurochem 56(6):1932–1939

    PubMed  CAS  Google Scholar 

  • Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, Perl DP, Schmeidler J, Kanof P, Davis KL (1995) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64(2):749–760

    PubMed  CAS  Google Scholar 

  • Bobinski M, Wegiel J, Wisniewski HM, Tarnawski M, Bobinski M, Reisberg B, De Leon MJ, Miller DC (1996) Neurofibrillary pathology—correlation with hippocampal formation atrophy in Alzheimer disease. Neurobiol Aging 17(6):909–919

    PubMed  CAS  Google Scholar 

  • Bottlaender M, Valette H, Roumenov D, Dolle F, Coulon C, Ottavani M, Hinnen F, Ricard M (2003) Biodistribution and radiation dosimetry of 18F-fluoro-A-85380 in healthy volunteers. J Nucl Med 44(4):596–601

    PubMed  CAS  Google Scholar 

  • Bowen DM, Benton JS, Spillane JA, Smith CC, Allen SJ (1982) Choline acetyltransferase activity and histopathology of frontal neocortex from biopsies of demented patients. J Neurol Sci 57(2–3):191–202

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathologica (Berl) 82(4):239–259

    CAS  Google Scholar 

  • Brandt J, Benedict RH (2001) Hopkin’s Verbal Learning Test—Revised. Professional manual. Psychological Assessment Resources, Odessa

    Google Scholar 

  • Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D, Jou J, Allen V, Tiongson E, Chefer SI, Koren AO, Mukhin AG (2006) Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch Gen Psychiatry 63(8):907–915

    PubMed  CAS  Google Scholar 

  • Buisson B, Bertrand D (2002) Nicotine addiction: the possible role of functional upregulation. Trends Pharmacol Sci 23(3):130–136

    PubMed  CAS  Google Scholar 

  • Bunge SA, Ochsner KN, Desmond JE, Glover GH, Gabrieli JD (2001) Prefrontal regions involved in keeping information in and out of mind. Brain 124(Pt 10):2074–2086

    PubMed  CAS  Google Scholar 

  • Candy JM, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF, Tomlinson BE (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 59(2):277–289

    PubMed  CAS  Google Scholar 

  • Chefer SI, London ED, Koren AO, Pavlova OA, Kurian V, Kimes AS, Horti AG, Mukhin AG (2003) Graphical analysis of 2-[18F]FA binding to nicotinic acetylcholine receptors in rhesus monkey brain. Synapse 48(1):25–34

    PubMed  CAS  Google Scholar 

  • Collins AC, Bhat RV, Pauly JR, Marks MJ (1990) Modulation of nicotine receptors by chronic exposure to nicotinic agonists and antagonists. Ciba Found Symp 152:68–82, discussion 82–66

    PubMed  CAS  Google Scholar 

  • Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18(2):192–205

    PubMed  CAS  Google Scholar 

  • Coull JT, Frith CD, Frackowiak RS, Grasby PM (1996) A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory. Neuropsychologia 34(11):1085–1095

    PubMed  CAS  Google Scholar 

  • Coyle J, Kershaw P (2001) Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: effects on the course of Alzheimer’s disease. Biol Psychiatry 49(3):289–299

    PubMed  CAS  Google Scholar 

  • Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219(4589):1184–1190

    PubMed  CAS  Google Scholar 

  • Coyle JT, Geerts H, Sorra K, Amatniek J (2007) Beyond in vitro data: a review of in vivo evidence regarding the allosteric potentiating effect of galantamine on nicotinic acetylcholine receptors in Alzheimer’s neuropathology. J Alzheimers Dis 11(4):491–507

    PubMed  CAS  Google Scholar 

  • Cummings JL, Schneider L, Tariot PN, Kershaw PR, Yuan W (2004) Reduction of behavioral disturbances and caregiver distress by galantamine in patients with Alzheimer’s disease. Am J Psychiatry 161(3):532–538

    PubMed  Google Scholar 

  • Darreh-Shori T, Kadir A, Almkvist O, Grut M, Wall A, Blomquist G, Eriksson B, Langstrom B, Nordberg A (2008) Inhibition of acetylcholinesterase in CSF versus brain assessed by 11C-PMP PET in AD patients treated with galantamine. Neurobiol Aging 29(2):168–184

    PubMed  CAS  Google Scholar 

  • Daube-Witherspoon MW, Matej S, Karp JS, Lewitt RM (2001) Application of the 3D row action maximum likelihood algorithm to clinical PET imaging. IEEE Trans Nuc Sci 48(1):24–30

    Google Scholar 

  • Davies P (1979) Neurotransmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res 171(2):319–327

    PubMed  CAS  Google Scholar 

  • DeKosky ST, Harbaugh RE, Schmitt FA, Bakay RA, Chui HC, Knopman DS, Reeder TM, Shetter AG, Senter HJ, Markesbery WR (1992) Cortical biopsy in Alzheimer’s disease: diagnostic accuracy and neurochemical, neuropathological, and cognitive correlations. Intraventricular Bethanechol Study Group. Ann Neurol 32(5):625–632

    PubMed  CAS  Google Scholar 

  • Delis DC, Kramer JH, Kaplan E, Ober BA (2000) California Verbal Learning Test—Second Edition Adult Version. Psychological Corporation, San Antonio

    Google Scholar 

  • Deweer B, Lehericy S, Pillon B, Baulac M, Chiras J, Marsault C, Agid Y, Dubois B (1995) Memory disorders in probable Alzheimer’s disease: the role of hippocampal atrophy as shown with MRI. J Neurol Neurosurg Psychiatry 58(5):590–597

    PubMed  CAS  Google Scholar 

  • Dolle F, Dolci L, Valette H, Hinnen F, Vaufrey F, Guenther I, Fuseau C, Coulon C, Bottlaender M, Crouzel C (1999) Synthesis and nicotinic acetylcholine receptor in vivo binding properties of 2-fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine: a new positron emission tomography ligand for nicotinic receptors. J Med Chem 42(12):2251–2259

    CAS  Google Scholar 

  • Ellis JR, Ellis KA, Bartholomeusz CF, Harrison BJ, Wesnes KA, Erskine FF, Vitetta L, Nathan PJ (2006) Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. Int J Neuropsychopharmacol 9(2):175–189

    PubMed  CAS  Google Scholar 

  • Ellis JR, Villemagne VL, Nathan PJ, Mulligan RS, Gong SJ, Chan JG, Sachinidis J, O’Keefe GJ, Pathmaraj K, Wesnes KA, Savage G, Rowe CC (2008) Relationship between nicotinic receptors and cognitive function in early Alzheimer’s disease: A 2-[18F]Fluoro-A-85380 PET study. Neurobiol Learn Mem 90(2):404–412

    PubMed  CAS  Google Scholar 

  • Fadda P, Martellotta MC, Gessa GL, Fratta W (1993) Dopamine and opioids interactions in sleep deprivation. Prog Neuropsychopharmacol Biol Psychiatry 17(2):269–278

    PubMed  CAS  Google Scholar 

  • Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41(1):31–37

    PubMed  CAS  Google Scholar 

  • Flynn DD, Mash DC (1986) Characterization of L-[3H]nicotine binding in human cerebral cortex: comparison between Alzheimer’s disease and the normal. J Neurochem 47(6):1948–1954

    PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    PubMed  CAS  Google Scholar 

  • Frankle WG, Slifstein M, Gunn RN, Huang Y, Hwang DR, Darr EA, Narendran R, Abi-Dargham A, Laruelle M (2006) Estimation of serotonin transporter parameters with 11C-DASB in healthy humans: reproducibility and comparison of methods. J Nucl Med 47(5):815–826

    PubMed  CAS  Google Scholar 

  • Frey PW, Colliver JA (1973) Sensitivity and response measures for discrimination learning. Learn Motiv 4:327–334

    Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1991) Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab 11(4):690–699

    PubMed  CAS  Google Scholar 

  • Galvin JE, Cornblatt B, Newhouse P, Ancoli-Israel S, Wesnes K, Williamson D, Zhu Y, Sorra K, Amatniek J (2008) Effects of galantamine on measures of attention: results from 2 clinical trials in Alzheimer disease patients with comparisons to donepezil. Alzheimer Dis Assoc Disord 22(1):30–38

    PubMed  CAS  Google Scholar 

  • Geerts H, Guillaumat PO, Grantham C, Bode W, Anciaux K, Sachak S (2005) Brain levels and acetylcholinesterase inhibition with galantamine and donepezil in rats, mice, and rabbits. Brain Res 1033(2):186–193

    PubMed  CAS  Google Scholar 

  • Gentry CL, Lukas RJ (2002) Regulation of nicotinic acetylcholine receptor numbers and function by chronic nicotine exposure. Curr Drug Targets CNS Neurol Disord 1(4):359–385

    PubMed  CAS  Google Scholar 

  • Goodglass H, Kaplan E (1972) The assessment of aphasias and related disorders. Lea and Febiger, Philadelphia

    Google Scholar 

  • Gron G, Brandenburg I, Wunderlich AP, Riepe MW (2006) Inhibition of hippocampal function in mild cognitive impairment: targeting the cholinergic hypothesis. Neurobiol Aging 27(1):78–87

    PubMed  CAS  Google Scholar 

  • Haroutunian V, Purohit DP, Perl DP, Marin D, Khan K, Lantz M, Davis KL, Mohs RC (1999) Neurofibrillary tangles in nondemented elderly subjects and mild Alzheimer disease. Arch Neurol 56(6):713–718

    PubMed  CAS  Google Scholar 

  • Hermann BP, Wyler AR, Bush AJ, Tabatabai FR (1992) Differential effects of left and right anterior temporal lobectomy on verbal learning and memory performance. Epilepsia 33(2):289–297

    Google Scholar 

  • Hernandez CM, Gearhart DA, Parikh V, Hohnadel EJ, Davis LW, Middlemore ML, Warsi SP, Waller JL, Terry AV Jr (2006) Comparison of galantamine and donepezil for effects on nerve growth factor, cholinergic markers, and memory performance in aged rats. J Pharmacol Exp Ther 316(2):679–694

    PubMed  CAS  Google Scholar 

  • Horti AG, Villemagne VL (2006) The quest for Eldorado: development of radio ligands for in vivo imaging of nicotinic acetylcholine receptors in human brain. Curr Pharm Des 12(30):3877–3900

    PubMed  CAS  Google Scholar 

  • Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL (1982) A new clinical scale for the staging of dementia. Br J Psychiatry 140:566–572

    PubMed  CAS  Google Scholar 

  • Hutchison CW, Nathan PJ, Mrazek L, Stough C (2001) Cholinergic modulation of speed of early information processing: the effect of donepezil on inspection time. Psychopharmacology (Berl) 155(4):440–442

    CAS  Google Scholar 

  • Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225(4667):1168–1170

    PubMed  CAS  Google Scholar 

  • Jellinger KA, Bancher C (1998) Neuropathology of Alzheimer’s disease: a critical update. J Neural Transmission Suppl 54:77–95

    CAS  Google Scholar 

  • Johnson SC, Saykin AJ, Flashman LA, McAllister TW, Sparling MB (2001) Brain activation on fMRI and verbal memory ability: functional neuroanatomic correlates of CVLT performance. J Int Neuropsychol Soc 7(1):55–62

    PubMed  CAS  Google Scholar 

  • Kadir A, Almkvist O, Wall A, Langstrom B, Nordberg A (2006) PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology (Berl) 188(4):509–520

    CAS  Google Scholar 

  • Kadir A, Darreh-Shori T, Almkvist O, Wall A, Langstrom B, Nordberg A (2007) Changes in brain 11C-nicotine binding sites in patients with mild Alzheimer’s disease following rivastigmine treatment as assessed by PET. Psychopharmacology (Berl) 191(4):1005–1014

    CAS  Google Scholar 

  • Kadir A, Darreh-Shori T, Almkvist O, Wall A, Grut M, Strandberg B, Ringheim A, Eriksson B, Blomquist G, Langstrom B, Nordberg A (2008) PET imaging of the in vivo brain acetylcholinesterase activity and nicotine binding in galantamine-treated patients with AD. Neurobiol Aging 29:1204–1217

    PubMed  CAS  Google Scholar 

  • Koontz J, Baskys A (2005) Effects of galantamine on working memory and global functioning in patients with mild cognitive impairment: a double-blind placebo-controlled study. Am J Alzheimers Dis Other Demen 20(5):295–302

    PubMed  Google Scholar 

  • Koylu E, Demirgoren S, London ED, Pogun S (1997) Sex difference in up-regulation of nicotinic acetylcholine receptors in rat brain. Life Sci 61(12):PL185–PL190

    CAS  Google Scholar 

  • Ksir C, Hakan R, Hall DP Jr, Kellar KJ (1985) Exposure to nicotine enhances the behavioral stimulant effect of nicotine and increases binding of [3H]acetylcholine to nicotinic receptors. Neuropharmacology 24(6):527–531

    PubMed  CAS  Google Scholar 

  • Kume T, Sugimoto M, Takada Y, Yamaguchi T, Yonezawa A, Katsuki H, Sugimoto H, Akaike A (2005) Up-regulation of nicotinic acetylcholine receptors by central-type acetylcholinesterase inhibitors in rat cortical neurons. Eur J Pharmacol 527(1–3):77–85

    PubMed  CAS  Google Scholar 

  • Lacritz LH, Cullum CM (1998) The Hopkins Verbal Learning Test and CVLT: a preliminary comparison. Arch Clin Neuropsychol 13(7):623–628

    PubMed  CAS  Google Scholar 

  • Lacritz LH, Cullum CM, Weiner MF, Rosenberg RN (2001) Comparison of the Hopkins verbal learning test-revised to the California verbal learning test in Alzheimer’s disease. Appl Neuropsychol 8(3):180–184

    PubMed  CAS  Google Scholar 

  • Lawrence AD, Sahakian BJ (1995) Alzheimer disease, attention, and the cholinergic system. Alzheimer Dis Assoc Disord 9(Suppl 2):43–49

    PubMed  Google Scholar 

  • Lewin JS, Friedman L, Wu D, Miller DA, Thompson LA, Klein SK, Wise AL, Hedera P, Buckley P, Meltzer H, Friedland RP, Duerk JL (1996) Cortical localization of human sustained attention: detection with functional MR using a visual vigilance paradigm. J Comput Assist Tomogr 20(5):695–701

    PubMed  CAS  Google Scholar 

  • Lezak MD (1995) Neuropsychological assessment, 3 edn. Oxford University Press, New York

    Google Scholar 

  • Lilienfeld S (2002) Galantamine-a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev 8(2):159–176

    PubMed  CAS  Google Scholar 

  • Lojkowska W, Ryglewicz D, Jedrzejczak T, Minc S, Jakubowska T, Jarosz H, Bochynska A (2003) The effect of cholinesterase inhibitors on the regional blood flow in patients with Alzheimer’s disease and vascular dementia. J Neurol Sci 216(1):119–126

    PubMed  CAS  Google Scholar 

  • Marks MJ, Stitzel JA, Collins AC (1985) Time course study of the effects of chronic nicotine infusion on drug response and brain receptors. J Pharmacol Exp Ther 235(3):619–628

    PubMed  CAS  Google Scholar 

  • Maziere M, Delforge J (1995) PET imaging [11C]nicotine: historical aspects. In: Domino E (ed) Brain imaging of nicotine and tobacco smoking. NPP Books, Ann Arbor, pp 13–28

    Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7):939–944

    PubMed  CAS  Google Scholar 

  • Mennemeier MS, Chatterjee A, Watson RT, Wertman E, Carter LP, Heilman KM (1994) Contributions of the parietal and frontal lobes to sustained attention and habituation. Neuropsychologia 32(6):703–716

    PubMed  CAS  Google Scholar 

  • Meyers JE, Meyers KR (1995) Rey Complex Figure Test and Recognition Trial. Psychological Assessment Resources, Odessa

    Google Scholar 

  • Mitkovski S, Villemagne VL, Novakovic KE, O’Keefe G, Tochon-Danguy H, Mulligan RS, Dickinson KL, Saunder T, Gregoire MC, Bottlaender M, Dolle F, Rowe CC (2005) Simplified quantification of nicotinic receptors with 2[18F]F-A-85380 PET. Nucl Med Biol 32(6):585–591

    PubMed  CAS  Google Scholar 

  • Mitsis EM, Cosgrove KP, Staley JK, Frohlich EB, Bois F, Tamagnan GD, Estok KM, Seibyl JP, Van Dyck CH (2007) [123I]5-IA-85380 SPECT imaging of beta2-nicotinic acetylcholine receptor availability in the aging human brain. Ann N Y Acad Sci 1097:168–170

    PubMed  CAS  Google Scholar 

  • Morris JC (1993) The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43(11):2412–2414

    PubMed  CAS  Google Scholar 

  • Mulligan RS, Ellis JR, Smith CL, Tochon-Danguy HJ, Rowe CC, Villemagne VL (2006) Characterization of a population-based metabolite correction for [18F]F-A85380 human PET studies. J Nuclear Med 47:282

    Google Scholar 

  • Nordberg A, Winblad B (1986) Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 72(1):115–119

    PubMed  CAS  Google Scholar 

  • Nordberg A, Hartvig P, Lilja A, Viitanen M, Amberla K, Lundqvist H, Andersson Y, Ulin J, Winblad B, Langstrom B (1990) Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Park Dis Dement Sect 2(3):215–224

    PubMed  CAS  Google Scholar 

  • Nordberg A, Alafuzoff I, Winblad B (1992a) Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 31(1):103–111

    PubMed  CAS  Google Scholar 

  • Nordberg A, Lilja A, Lundqvist H, Hartvig P, Amberla K, Viitanen M, Warpman U, Johansson M, Hellstrom-Lindahl E, Bjurling P Fasth K-J, Langstrom B, Winblad B (1992b) Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol Aging 13(6):747–758

    PubMed  CAS  Google Scholar 

  • Nordberg A, Lundqvist H, Hartvig P, Lilja A, Langstrom B (1995) Kinetic analysis of regional (S)(-)11C-nicotine binding in normal and Alzheimer brains—in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9(1):21–27

    PubMed  CAS  Google Scholar 

  • Nordberg A, Lundqvist H, Hartvig P, Andersson J, Johansson M, Hellstrom-Lindahl E, Langstrom B (1997) Imaging of nicotinic and muscarinic receptors in Alzheimer’s disease: effect of tacrine treatment. Dement Geriatr Cogn Disord 8(2):78–84

    PubMed  CAS  Google Scholar 

  • Nordberg A, Amberla K, Shigeta M, Lundqvist H, Viitanen M, Hellstrom-Lindahl E, Johansson M, Andersson J, Hartvig P, Lilja A, Langstrom B, Winblad B (1998) Long-term tacrine treatment in three mild Alzheimer patients: effects on nicotinic receptors, cerebral blood flow, glucose metabolism, EEG, and cognitive abilities. Alzheimer Dis Assoc Disord 12(3):228–237

    PubMed  CAS  Google Scholar 

  • O’Brien JT, Wiseman R, Burton EJ, Barber B, Wesnes K, Saxby B, Ford GA (2002) Cognitive associations of subcortical white matter lesions in older people. Ann N Y Acad Sci 977:436–444

    Article  PubMed  Google Scholar 

  • O’Brien JT, Colloby SJ, Pakrasi S, Perry EK, Pimlott SL, Wyper DJ, McKeith IG, Williams ED (2007) Alpha4beta2 nicotinic receptor status in Alzheimer’s disease using 123I-5IA-85380 single-photon-emission computed tomography. J Neurol Neurosurg Psychiatry 78(4):356–362

    PubMed  Google Scholar 

  • Pantel J, Schonknecht P, Essig M, Schroder J (2004) Distribution of cerebral atrophy assessed by magnetic resonance imaging reflects patterns of neuropsychological deficits in Alzheimer’s dementia. Neurosci Lett 361(1–3):17–20

    PubMed  CAS  Google Scholar 

  • Pardo JV, Fox PT, Raichle ME (1991) Localization of a human system for sustained attention by positron emission tomography. Nature 349:61–64

    PubMed  CAS  Google Scholar 

  • Pauly JR, Marks MJ, Gross SD, Collins AC (1991) An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment. J Pharmacol Exp Ther 258(3):1127–1136

    PubMed  CAS  Google Scholar 

  • Perry EK, Morris CM, Court JA, Cheng AV, Fairbairn A, McKeith IG, Irving D, Brown A, Perry RH (1995) Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: a possible index of early neuropathology. Neuroscience 64(2):385–395

    PubMed  CAS  Google Scholar 

  • Perry EK, Martin-Ruiz CM, Court JA (2001) Nicotinic receptor subtypes in human brain related to aging and dementia. Alcohol 24(2):63–68

    PubMed  CAS  Google Scholar 

  • Phelps EA, Hyder F, Blamire AM, Shulman RG (1997) FMRI of the prefrontal cortex during overt verbal fluency. Neuroreport 8(2):561–565

    PubMed  CAS  Google Scholar 

  • Raskind MA, Peskind ER, Wessel T, Yuan W (2000) Galantamine in AD: a 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology 54(12):2261–2268

    PubMed  CAS  Google Scholar 

  • Rockwood K, Mintzer J, Truyen L, Wessel T, Wilkinson D (2001) Effects of a flexible galantamine dose in Alzheimer’s disease: a randomised, controlled trial. J Neurol Neurosurg Psychiatry 71(5):589–595

    PubMed  CAS  Google Scholar 

  • Rosen WG (1980) Verbal fluency in aging and dementia. J Clin Neuropsych 2:135–146

    Google Scholar 

  • Rosen WG, Mohs RC, Davis KL (1984) A new rating scale for Alzheimer’s disease. Am J Psychiatry 141(11):1356–1364

    PubMed  CAS  Google Scholar 

  • Rueter LE, Donnelly-Roberts DL, Curzon P, Briggs CA, Anderson DJ, Bitner RS (2006) A-85380: a pharmacological probe for the preclinical and clinical investigation of the alphabeta neuronal nicotinic acetylcholine receptor. CNS Drug Rev 12(2):100–112

    PubMed  CAS  Google Scholar 

  • Sanderson EM, Drasdo AL, McCrea K, Wonnacott S (1993) Upregulation of nicotinic receptors following continuous infusion of nicotine is brain-region-specific. Brain Res 617(2):349–352

    PubMed  CAS  Google Scholar 

  • Sarter M, Bruno JP, Givens B (2003) Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiol Learn Mem 80(3):245–256

    PubMed  CAS  Google Scholar 

  • Saxton J, Ratcliff G, Munro CA, Coffey EC, Becker JT, Fried L, Kuller L (2000) Normative data on the Boston Naming Test and two equivalent 30-item short forms. Clin Neuropsychol 14(4):526–534

    PubMed  CAS  Google Scholar 

  • Saykin AJ, Johnson SC, Flashman LA, McAllister TW, Sparling M, Darcey TM, Moritz CH, Guerin SJ, Weaver J, Mamourian A (1999) Functional differentiation of medial temporal and frontal regions involved in processing novel and familiar words: an fMRI study. Brain 122(Pt 10):1963–1971

    PubMed  Google Scholar 

  • Schmidt ME, Ernst M, Matochik JA, Maisog JM, Pan B-S, Zametkin AJ, Potter WZ (1996) Cerebral glucose metabolism during pharmacologic studies: test–retest under placebo conditions. J Nucl Med 37(7):1142–1149

    PubMed  CAS  Google Scholar 

  • Seidenberg M, Geary E, Hermann B (2005) Investigating temporal lobe contribution to confrontation naming using MRI quantitative volumetrics. J Int Neuropsychol Soc 11:358–366

    PubMed  Google Scholar 

  • Staley JK, van Dyck CH, Weinzimmer D, Brenner E, Baldwin RM, Tamagnan GD, Riccardi P, Mitsis E, Seibyl JP (2005) 123I-5-IA-85380 SPECT measurement of nicotinic acetylcholine receptors in human brain by the constant infusion paradigm: feasibility and reproducibility. J Nucl Med 46(9):1466–1472

    PubMed  CAS  Google Scholar 

  • Sternberg S (1966) High-speed scanning in human memory. Science 153:652–654

    PubMed  CAS  Google Scholar 

  • Sun W, Ginovart N, Ko F, Seeman P, Kapur S (2003) In vivo evidence for dopamine-mediated internalization of D2-receptors after amphetamine: differential findings with [3H]raclopride versus [3H]spiperone. Mol Pharmacol 63(2):456–462

    PubMed  CAS  Google Scholar 

  • Svensson AL, Nordberg A (1996) Tacrine interacts with an allosteric activator site on alpha 4 beta 2 nAChRs in M10 cells. Neuroreport 7(13):2201–2205

    PubMed  CAS  Google Scholar 

  • Tariot PN, Solomon PR, Morris JC, Kershaw P, Lilienfeld S, Ding C (2000) A 5-month, randomized, placebo-controlled trial of galantamine in AD. The Galantamine USA-10 Study Group. . Neurology 54(12):2269–2276

    PubMed  CAS  Google Scholar 

  • Thompson JC, Stough C, Ames D, Ritchie C, Nathan PJ (2000) Effects of the nicotinic antagonist mecamylamine on inspection time. Psychopharmacology (Berl) 150(1):117–119

    CAS  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289

    PubMed  CAS  Google Scholar 

  • Ueda M, Iida Y, Mukai T, Mamede M, Ishizu K, Ogawa M, Magata Y, Konishi J, Saji H (2004) 5-[123I]Iodo-A-85380: assessment of pharmacological safety, radiation dosimetry and SPECT imaging of brain nicotinic receptors in healthy human subjects. Ann Nucl Med 18(4):337–344

    PubMed  CAS  Google Scholar 

  • Valette H, Bottlaender M, Dolle F, Coulon C, Ottaviani M, Syrota A (2003) Long-lasting occupancy of central nicotinic acetylcholine receptors after smoking: a PET study in monkeys. J Neurochem 84:105–111

    PubMed  CAS  Google Scholar 

  • Warpman U, Nordberg A (1995) Epibatidine and ABT 418 reveal selective losses of alpha 4 beta 2 nicotinic receptors in Alzheimer brains. Neuroreport 6(17):2419–2423

    PubMed  CAS  Google Scholar 

  • Wesnes K, Pincock C (2002) Practice effects on cognitive tasks: a major problem? Lancet Neurol 1(8):473

    PubMed  Google Scholar 

  • Wesnes KA, Ward T, McGinty A, Petrini O (2000) The memory enhancing effects of a Ginko biloba/Panax ginseng combination in healthy middle-aged volunteers. Psychopharmacology 152:353–361

    PubMed  CAS  Google Scholar 

  • Whitehouse PJ (1987) Neurotransmitter receptor alterations in Alzheimer’s disease: a review. Alzheimer Dis Assoc Disord 1(1):9–18

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10(2):122–126

    PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Martino AM, Wagster MV, Price DL, Mayeux R, Atack JR, Kellar KJ (1988) Reductions in [3H]nicotinic acetylcholine binding in Alzheimer’s disease and Parkinson’s disease: an autoradiographic study. Neurology 38(5):720–723

    PubMed  CAS  Google Scholar 

  • Wiggs CL, Weisberg J, Martin A (1999) Neural correlates of semantic and episodic memory retrieval. Neuropsychologia 37:103–118

    PubMed  CAS  Google Scholar 

  • Wood AG, Saling MM, Abbott DF, Jackson GD (2001) A neurocognitive account of frontal lobe involvement in orthographic lexical retrieval: an fMRI study. Neuroimage 14:162–169

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research support was provided by the Austin Hospital Medical Research Fund. Fellowship support for JRE was provided by the Australian Rotary Health Fund and the Monash University Postgraduate Publication Award scheme. Fellowship support for PJN was provided by the National Health and Medical Research Council of Australia and the Alzheimer’s Australia Research Foundation. The authors would like to thank Drs. Michel Bottlaender and Frédéric Dollé of the SHFJ PET Center, Orsay (France) for provision of precursor and technical assistance.

Disclosure statement

There are no actual or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Ellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, J.R., Nathan, P.J., Villemagne, V.L. et al. Galantamine-induced improvements in cognitive function are not related to alterations in α4β2 nicotinic receptors in early Alzheimer’s disease as measured in vivo by 2-[18F]Fluoro-A-85380 PET. Psychopharmacology 202, 79–91 (2009). https://doi.org/10.1007/s00213-008-1347-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1347-9

Keywords

Navigation