Skip to main content
Log in

Dopamine D2/D3 receptor agonist quinpirole impairs spatial reversal learning in rats: investigation of D3 receptor involvement in persistent behavior

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Dopamine is strongly implicated in the ability to shift behavior in response to changing stimulus-reward contingencies.

Objectives

We investigated the effects of systemic administration of the D2/D3 receptor agonist quinpirole (0.1, 0.3 mg/kg), the D2/D3 receptor antagonist raclopride (0.1, 0.3 mg/kg), the selective D3 antagonist nafadotride (0.3, 1.0 mg/kg), and combined administration of raclopride (0.1 mg/kg) or nafadotride (1.0 mg/kg) with quinpirole (0.3 mg/kg) on spatial discrimination and reversal learning.

Materials and methods

Rats were trained on an instrumental two-lever spatial discrimination and reversal learning task. Both levers were presented, only one of which was reinforced. The rat was required to respond on the reinforced lever under a fixed ratio 3 schedule of reinforcement. Following attainment of criterion, a reversal was introduced.

Results

None of the drugs altered performance during retention of the previously reinforced contingencies. Quinpirole (0.3 mg/kg) significantly impaired reversal learning by increasing both trials and incorrect responses to criterion in reversal phase, a pattern of behavior manifested as increased perseverative responding on the previously reinforced lever. In contrast, neither raclopride nor nafadotride when administered alone altered reversal performance. However, raclopride blocked the quinpirole-induced reversal deficit, whereas combined administration of nafadotride and quinpirole affected not only performance during the reversal but also the retention phase. The reversal impairment resulting from co-administration of nafadotride and quinpirole was associated with both perseverative and learning errors.

Conclusions

Our data indicate distinct roles for D2 and D3 receptors in the capacity to modify behavior flexibly in the face of environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Billett EA, Richter MA, Sam F, Swinson RP, Dai XY, King N, Badri F, Sasaki T, Buchanan JA, Kennedy JL (1998) Investigation of dopamine system genes in obsessive-compulsive disorder. Psychiatr Genet 8:163–169

    Article  PubMed  CAS  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324

    PubMed  CAS  Google Scholar 

  • Boulougouris V, Dalley JW, Robbins TW (2007) Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav Brain Res 179:219–228

    Article  PubMed  Google Scholar 

  • Boulougouris V, Glennon JC, Robbins TW (2008) Dissociable effects of selective 5-HT(2A) and 5-HT(2C) receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology 33:2007–2019. doi:10.1038/sj.npp.1301584

    Article  PubMed  CAS  Google Scholar 

  • Bussey TJ, Muir JL, Everitt BJ, Robbins TW (1997) Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. Behav Neurosci 111:920–936

    Article  PubMed  CAS  Google Scholar 

  • Butter CM (1969) Impairments in selective attention to visual stimuli in monkeys with inferotemporal and lateral striate lesions. Brain Res 12:374–383

    Article  PubMed  CAS  Google Scholar 

  • Catalano M, Sciuto G, Di Bella D, Novelli E, Nobile M, Bellodi L (1994) Lack of association between obsessive-compulsive disorder and the dopamine D3 receptor gene: some preliminary considerations. Am J Med Genet 54:253–255

    Article  PubMed  CAS  Google Scholar 

  • Chang YH, Liao RM (2003) Differential effects of dopamine D1 and D2 receptor antagonists on conditioned orienting behavior in the rat. Chin J Physiol 46:159–168

    PubMed  CAS  Google Scholar 

  • Chudasama Y, Robbins TW (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23:8771–8780

    PubMed  CAS  Google Scholar 

  • Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2004) Cognitive inflexibility following prefrontal serotonin depletion. Science 304:878–880

    Article  PubMed  CAS  Google Scholar 

  • Clarke HF, Walker SC, Crofts HS, Dalley JW, Robbins TW, Roberts AC (2005) Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J Neurosci 25:532–538

    Article  PubMed  CAS  Google Scholar 

  • Clarke H, Walker S, Dalley J, Robbins T, Roberts A (2007) Cognitive inflexibility after prefrontal depletion is behaviorally and neurochemically specific. Cereb Cortex 17:18–27

    Article  PubMed  CAS  Google Scholar 

  • Denys D, van der Wee N, Janssen J, De Geus F, Westenberg HG (2004b) Low level of dopaminergic D2 receptor binding in obsessive-compulsive disorder. Biol Psychiatry 55:1041–1045

    Article  PubMed  CAS  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72

    Article  PubMed  CAS  Google Scholar 

  • Divac I, Rosvold HE, Szwarcbart MK (1967) Behavioral effects of selective ablation of the caudate nucleus. J Comp Physiol Psychol 63:184–190

    Article  PubMed  CAS  Google Scholar 

  • Dunnett SB, Iversen SD (1980) Regulatory impairments following selective kainic acid lesions of the neostriatum. Behav Brain Res 1:497–506

    Article  PubMed  CAS  Google Scholar 

  • Eilam D, Golani I, Szechtman H (1989) D2-agonist quinpirole induces perseveration of routes and hyperactivity but no perseveration of movements. Brain Res 490:255–267

    Article  PubMed  CAS  Google Scholar 

  • Fellows LK, Farah MJ (2003) Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain 126:1830–1837

    Article  PubMed  Google Scholar 

  • Ferry AT, Lu XC, Price JL (2002) Effects of excitotoxic lesions in the ventral striatopallidal–thalamocortical pathway on odor reversal learning: inability to extinguish an incorrect response. Exp Brain Res 131:320–335

    Article  Google Scholar 

  • Floresco SB, Magyar O, Ghods-Sharifi S, Vexelman C, Tse MT (2006) Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology 31:297–309

    Article  PubMed  CAS  Google Scholar 

  • Fowler SC, Liou JR (1998) Haloperidol, raclopride, and eticlopride induce microcatalepsy during operant performance in rats, but clozapine and SCH 23390 do not. Psychopharmacology (Berl) 140:81–90

    Article  CAS  Google Scholar 

  • Idris NF, Repeto P, Neill JC, Large CH (2005) Investigation of the effects of lamotrigine and clozapine in improving reversal-learning impairments induced by acute phencyclidine and D-amphetamine in the rat. Psychopharmacology 179:336–348

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo A, Wiedholz LM, Millstein RA, Yang RJ, Bussey TJ, Sakside LM et al (2006) Genetic and dopaminergic modulation of reversal learning in a touchscreen-based operant procedure for mice. Behav Brain Res 171:181–188

    Article  PubMed  CAS  Google Scholar 

  • Joel D, Avisar A, Doljansky J (2001) Enhancement of excessive lever-pressing after post-training signal attenuation in rats by repeated administration of the D1 antagonist SCH 23390 or the D2 agonist quinpirole, but not the D1 agonist SKF 38393 or the D2 antagonist haloperidol. Behav Neurosci 115:1291–300

    Article  PubMed  CAS  Google Scholar 

  • Jones B, Mishkin M (1972) Limbic lesions and the problem of stimulus–reinforcement associations. Exp Neurol 36:362–377

    Article  PubMed  CAS  Google Scholar 

  • Kirkby RJ (1969) Caudate nucleus lesions impair spontaneous alternation. Percept Mot Skills 29:550

    PubMed  CAS  Google Scholar 

  • Kolb B (1997) Studies on the caudate–putamen and the dorsomedial thalamic nucleus of the rat: Implications for mammalian frontal-lobe functions. Physiol Behav 18:237–244

    Article  Google Scholar 

  • Kontis D, Boulougouris V, Papakosta VM, Kalogerakou S, Papadopoulos S, Giannou H, Poulopoulou C, Tsaltas E (2008) Dopaminergic and serotonergic modulation of persistent behaviour in the reinforced spatial alternation model of obsessive-compulsive disorder. Psychopharmacology (Berlin). doi:10.1007/s00213-008-1241-5

  • Kruzich PJ, Grandy DK (2004) Dopamine D2 receptors mediate two-odor discrimination and reversal learning in C57BL/6 mice. BMC Neurosci 5:12

    Article  PubMed  Google Scholar 

  • Kurylo DD, Tanguay S (2003) Effects of quinpirole on behavioral extinction. Physiol Behav 80:1–7

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Groman S, London ED, Jentsch JD (2007) Dopamine D(2)/D(3) receptors play a specific role in the reversal of a learned visual discrimination in monkeys. Neuropsychopharmacology 32:2125–2134

    Article  PubMed  CAS  Google Scholar 

  • Levant B, Vansell NR (1997) In vivo occupancy of D2 dopamine receptors by nafadotride. Neuropsychopharmacology 17:67–71

    Article  PubMed  CAS  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103

    Article  PubMed  Google Scholar 

  • McDougle CJ, Goodman WK, Price LH (1994a) Dopamine antagonists in tic-related and psychotic spectrum obsessive compulsive disorder. J Clin Psychiatry 55(Suppl 13):24–31

    PubMed  Google Scholar 

  • McDougle CJ, Goodman WK, Leckman JF, Lee NC, Heninger GR, Price LH (1994b) Haloperidol addition in fluvoxamine-refractory obsessive-compulsive disorder. A double-blind placebo controlled study in patients with and without tics. Arch Gen Psychiatry 51:302–308

    PubMed  CAS  Google Scholar 

  • Modell JG, Mountz JM, Curtis GC, Greden JF (1989) Neurophysiologic dysfunction in basal ganglia/limbic striatal and thalamocortical circuits as a pathogenetic mechanism of obsessive-compulsive disorder. J Neuropsychiatry 1:27–36

    CAS  Google Scholar 

  • Murphy FC, Smith KA, Cowen PJ, Robbins TW, Sahakian BJ (2002) The effects of tryptophan depletion on cognitive and affective processing in healthy volunteers. Psychopharmacology 163:42–53

    Article  PubMed  CAS  Google Scholar 

  • Pauls DL, Towbin KE, Leckman JF, Zahner GE, Cohen DJ (1986) Gilles de la Tourette’s syndrome and obsessive-compulsive disorder. Evidence supporting a genetic relationship. Arch Gen Psychiatry 43:1180–1182

    PubMed  CAS  Google Scholar 

  • Ragozzino ME (2002) The effects of dopamine D(1) receptor blockade in the prelimbic–infralimbic areas on behavioral flexibility. Learn Mem 9:18–28

    Article  PubMed  Google Scholar 

  • Ragozzino ME, Choi D (2004) Dynamic changes in acetylcholine output in the medial striatum during place reversal learning. Learn Mem 11:70–77

    Article  PubMed  Google Scholar 

  • Ragozzino ME, Jih J, Tzavos A (2002a) Involvement of the dorsomedial striatum in behavioral flexibility: role of muscarinic cholinergic receptors. Brain Res 953:205–14

    Article  PubMed  CAS  Google Scholar 

  • Ragozzino ME, Ragozzino KE, Mizumori SJ, Kesner RP (2002b) Role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning. Behav Neurosci 116:105–115

    Article  PubMed  Google Scholar 

  • Ridley RM, Haystead TA, Baker HF (1981) An analysis of visual object reversal learning in the marmoset after amphetamine and haloperidol. Pharmacol Biochem Behav 14:345–351

    Article  PubMed  CAS  Google Scholar 

  • Rogers RD, Andrews TC, Grasby PM, Brooks DJ, Robbins TW (2000) Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. J Cogn Neurosci 12:142–162

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Hornak J, Wade D, McGrath J (1994) Emotion related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry 57:1518–1524

    Article  PubMed  CAS  Google Scholar 

  • Sullivan RM, Talangbayan H, Einat H, Szechtman H (1998) Effects of quinpirole on central dopamine systems in sensitized and non-sensitized rats. Neuroscience 83:781–789

    Article  PubMed  CAS  Google Scholar 

  • Szechtman H, Sulis W, Eilam D (1998) Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive-compulsive disorder (OCD). Behav Neurosci 112:1475–1485

    Article  PubMed  CAS  Google Scholar 

  • Szechtman H, Eckert MJ, Tse WS, Boersma JT, Bonura CA, McClelland JZ, Culver KE, Eilam D (2001) Compulsive checking behavior of quinpirole-sensitized rats as an animal model of obsessive-compulsive disorder (OCD): form and control. BMC Neuroscience 2:4

    Article  PubMed  CAS  Google Scholar 

  • van der Meulen JA, Joosten RN, de Bruin JP, Feenstra MG (2006) Dopamine and noradrenaline efflux in the medial prefrontal cortex during serial reversals and extinction of instrumental goal-directed behavior. Cereb Cortex 17:1444–1453

    Article  PubMed  Google Scholar 

  • Weiner I, Feldon J (1986) Reversal and nonreversal shifts under amphetamine. Psychopharmacology 89:355–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Programme Grant from the Wellcome Trust (no. 076274/4/Z/04/Z) to TWR. The BCNI is funded by a joint award from the Medical Research Council and the Wellcome Trust. VB is supported by the Domestic Research Studentship, the Cambridge European Trusts, the Bakalas Foundation Scholarship, and the Oon Khye Beng Ch’ia Tsio Studentship from Downing College. AC is recipient of a postdoctoral fellowship from FIS-ISCIII. We thank David Theobald for preparing the drugs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Boulougouris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulougouris, V., Castañé, A. & Robbins, T.W. Dopamine D2/D3 receptor agonist quinpirole impairs spatial reversal learning in rats: investigation of D3 receptor involvement in persistent behavior. Psychopharmacology 202, 611–620 (2009). https://doi.org/10.1007/s00213-008-1341-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1341-2

Keywords

Navigation