Skip to main content
Log in

Haloperidol and risperidone have specific effects on altered pain sensitivity in the ketamine model of schizophrenia

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The ketamine (ket) model reflects features of schizophrenia as well as secondary symptoms such as altered pain sensitivity.

Objectives

In the present study, we investigated the effect of subchronic oral treatment with haloperidol (hal, 0.075 mg/kg) and risperidone (ris, 0.2 mg/kg) on altered pain perception and locomotor activity in this model.

Results

In reaction to 5 mg/kg morphine, ket pretreated animals showed a diminished analgesic response. Hal had no analgesic effect per se, but the compound normalised the analgesic reaction to morphine in the ket pretreated animals. The effect of ris was complex. First, there was no analgesic effect per se, and control animals showed a dose-dependent increase in the analgesic index after morphine injection. In the ket group treated with ris, the analgesic response to 5 mg/kg morphine was attenuated and in response to 10 mg/kg analgesia was comparable with that measured in controls. The reduced analgesic effect was not due to pharmacokinetic differences in morphine metabolism. After administration via drinking water in saline-injected control animals, the hal blood serum concentration was 2.6 ± 0.45 ng/ml. In ket-injected animals, the mean serum concentration of hal amounted to 1.2 ± 0.44 ng/ml. In the experiment using ris, animals in the control group had higher ris serum concentrations compared with ket-injected animals. In control animals, morphine dose dependently decreased locomotor activity. This effect was significantly stronger in the ket pretreated groups.

Conclusions

Hal and ris had different effects on altered pain sensitivity. It was hypothesised that these results are connected with alterations in dopamine D2 and μ opioid receptor binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • American Psychiatric Association’s Task Force on Research Ethics (2006) Ethical principles and practices for research involving human participants with mental illness. Psychiatr Serv 57:552–557

    Article  Google Scholar 

  • Becker A, Grecksch G (2000) Social memory is impaired in neonatally ibotenic acid lesioned rats. Behav Brain Res 109:137–140

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Grecksch G (2003) Haloperidol and clozapine affect social behaviour in rats postnatally lesioned in the ventral hippocampus. Pharmacol Biochem Behav 76:1–8

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Grecksch G (2004) Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Test of predictive validity. Prog Neuropsychopharmacol Biol Psychiatry 28:1267–1277

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Peters B, Schroeder H, Mann T, Huether G, Grecksch G (2003) Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27:687–700

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Grecksch G, Schroeder H (2006) Pain sensitivity is altered in animals after subchronic ketamine treatment. Psychopharmacology (Berl) 189:237–247

    Article  CAS  Google Scholar 

  • Bernstein HG, Krell D, Emrich HM, Baumann B, Danos P, Diekmann S, Bogerts B (2002) Fewer beta-endorphin expressing arcuate nucleus neurons and reduced beta-endorphinergic innervation of paraventricular neurons in schizophrenics and patients with depression. Cell Mol Biol (Noisy-le-grand) 48(Online Pub):OL259–OL265

    CAS  Google Scholar 

  • Bickerstaff LK, Harris SC, Leggett RS, Cheah KC (1988) Pain insensitivity in schizophrenic patients. A surgical dilemma. Arch Surg 123:49–51

    PubMed  CAS  Google Scholar 

  • Blumensohn R, Ringler D, Eli I (2002) Pain perception in patients with schizophrenia. J Nerv Ment Dis 190:481–483

    Article  PubMed  Google Scholar 

  • Brockmöller J, Kirchheiner J, Schmider J, Walter S, Sachse C, Müller-Oerlinghausen B, Roots I (2002) The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin Pharmacol Ther 72:438–452

    Article  PubMed  CAS  Google Scholar 

  • Buckley PF (2007) Receptor-binding profiles of antipsychotics: clinical strategies when switching between agents. J Clin Psychiatry 68(Suppl 6):5–9

    PubMed  CAS  Google Scholar 

  • Chan WH, Sun WZ, Ueng TH (2005) Induction of rat hepatic cytochrome P-450 by ketamine and its toxicological implications. J Toxicol Environ Health A 68:1581–1597

    Article  PubMed  CAS  Google Scholar 

  • Charlier R, Prost M, Binon F, Deltourg G (1961) Etude pharmacologique d’un antitussif le fumarate acid, de phenethyl-1(propyne-2yl)-4-propionoxy-4-piperidine. Arch Int Pharmacodyn Ther 134:306–327

    PubMed  CAS  Google Scholar 

  • Conley RR, Kelly DL (2002) Current status of antipsychotic treatment. Curr Drug Targets CNS Neurol Disord 1:123–128

    Article  PubMed  CAS  Google Scholar 

  • Davis GC, Buchsbaum MS, Naber D, Pickar D, Post R, van Kammen D, Bunney WE Jr (1982) Altered pain perception and cerebrospinal endorphins in psychiatric illness. Ann N Y Acad Sci 398:366–373

    Article  PubMed  CAS  Google Scholar 

  • Dworkin RH (1994) Pain insensitivity in schizophrenia: a neglected phenomenon and some implications. Schizophr Bull 20:235–248

    PubMed  CAS  Google Scholar 

  • Ellenbroek BA (2007) The ethological analysis of monkeys in a social setting as an animal model of schizophrenia. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology. Birkhäuser, Basel, pp 265–284

    Google Scholar 

  • Fishbain DA (1982) Pain insensitivity in psychosis. Ann Emerg Med 11:630–632

    Article  PubMed  CAS  Google Scholar 

  • Fishbain DA, Cutler RB, Lewis J, Cole B, Rosomoff RS, Rosomoff HL (2004) Do the second-generation “atypical neuroleptics” have analgesic properties? A structured evidence-based review. Pain Med 5:359–365

    Article  PubMed  Google Scholar 

  • Flores JA, El Banoua F, Galan-Rodriguez B, Fernandez-Espejo E (2004) Opiate anti-nociception is attenuated following lesion of large dopamine neurons of the periaqueductal grey: critical role for D1 (not D2) dopamine receptors. Pain 110:205–214

    Article  PubMed  CAS  Google Scholar 

  • Geuze E, Westenberg HG, Jochims A, de Kloet CS, Bohus M, Vermetten E, Schmahl C (2007) Altered pain processing in veterans with posttraumatic stress disorder. Arch Gen Psychiatry 64:76–85

    Article  PubMed  Google Scholar 

  • Jochum T, Letzsch A, Greiner W, Wagner G, Sauer H, Bär KJ (2006) Influence of antipsychotic medication on pain perception in schizophrenia. Psychiatry Res 142:151–156

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Seeman P (2002) NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors-implications for models of schizophrenia. Mol Psychiatry 7:837–844

    Article  PubMed  CAS  Google Scholar 

  • King MA, Bradshaw S, Chang AH, Pintar JE, Pasternak GW (2001) Potentiation of opioid analgesia in dopamine2 receptor knock-out mice: evidence for a tonically active anti-opioid system. J Neurosci 21:7788–7792

    PubMed  CAS  Google Scholar 

  • Kirschbaum KM, Finger S, Vogel F, Burger R, Gerlach M, Riederer P, Hiemke C (2008) LC with column-switching and spectrophotometric detection for determination of risperidone and 9-hydroxyrisperidone in human serum. Chromatographia 67:321–324

    Article  CAS  Google Scholar 

  • Kudo S, Ishizaki T (1999) Pharmacokinetics of haloperidol: an update. Clin Pharmacokinet 37:435–456

    Article  PubMed  CAS  Google Scholar 

  • Kudoh A, Ishihara H, Matsuki A (2000) Current perception thresholds and postoperative pain in schizophrenic patients. Reg Anesth Pain Med 25:475–479

    PubMed  CAS  Google Scholar 

  • Kuribara H (1995) Modification of morphine sensitization by opioid and dopamine receptor antagonists: evaluation by studying ambulation in mice. Eur J Pharmacol 275:251–258

    Article  PubMed  CAS  Google Scholar 

  • Leon J, Susce MT, Pan RM, Wedlund PJ, Orrego ML, Diaz FJ (2007) A study of genetic (CYP2D6 and ABCB1) and environmental (drug inhibitors and inducers) variables that may influence plasma risperidone levels. Pharmacopsychiatry 40:93–102

    Article  PubMed  CAS  Google Scholar 

  • Livingston A, Waterman AE (1978) The development of tolerance to ketamine in rats and the significance of hepatic metabolism. Br J Pharmacol 64:63–69

    PubMed  CAS  Google Scholar 

  • Loch JM, Potter J, Bachmann KA (1995) The influence of anesthetic agents on rat hepatic cytochromes P450 in vivo. Pharmacology 50:146–153

    Article  PubMed  CAS  Google Scholar 

  • Ludascher P, Bohus M, Lieb K, Philipsen A, Jochims A, Schmahl C (2007) Elevated pain thresholds correlate with dissociation and aversive arousal in patients with borderline personality disorder. Psychiatry Res 149:291–296

    Article  PubMed  Google Scholar 

  • Marietta MP, Vore ME, Way WL, Trevor AJ (1977) Characterization of ketamine induction of hepatic microsomal drug metabolism. Biochem Pharmacol 26:2451–2453

    Article  PubMed  CAS  Google Scholar 

  • Maurer HP, Sauer C, Theobald DS (2006) Toxicokinetics of drugs of abuse: current knowledge of the isoenzymes involved in the human metabolism of tetrahydrocannabinol, cocaine, heroin, morphine, and codeine. Ther Drug Monit 28:447–453

    Article  PubMed  CAS  Google Scholar 

  • Michael-Titus A, Bousselmame R, Costentin J (1990) Stimulation of dopamine D2 receptors induces an analgesia involving an opioidergic but non enkephalinergic link. Eur J Pharmacol 187:201–207

    Article  PubMed  CAS  Google Scholar 

  • Morgan MJ, Franklin KB (1991) Dopamine receptor subtypes and formalin test analgesia. Pharmacol Biochem Behav 40:317–322

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007

    PubMed  CAS  Google Scholar 

  • Pan L, Belpaire FM (1999) In vitro study on the involvement of CYP1A2, CYP2D6 and CYP3A4 in the metabolism of haloperidol and reduced haloperidol. Eur J Clin Pharmacol 55:599–604

    Article  PubMed  CAS  Google Scholar 

  • Richelson E (1999) Receptor pharmacology of neuroleptics: relation to clinical effects. J Clin Psychiatry 60 Suppl 10:5–14

    Google Scholar 

  • Russig H, Kovacevic A, Murphy CA, Feldon J (2003) Haloperidol and clozapine antagonise amphetamine-induced disruption of latent inhibition of conditioned taste aversion. Psychopharmacology (Berl) 170:263–270

    Article  CAS  Google Scholar 

  • Schmajuk NA, Christiansen B, Cox L (2000) Haloperidol reinstates latent inhibition impaired by hippocampal lesions: data and theory. Behav Neurosci 114:659–670

    Article  PubMed  CAS  Google Scholar 

  • Schreiber S, Backer MM, Weizman R, Pick CG (1997) Augmentation of opioid induced antinociception by the atypical antipsychotic drug risperidone in mice. Neurosci Lett 228:25–28

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (2002) Atypical antipsychotics: mechanism of action. Can J Psychiatry 47:27–38

    PubMed  Google Scholar 

  • Seeman P (2006) Targeting the dopamine D2 receptor in schizophrenia. Expert Opin Ther Targets 10:515–531

    Article  PubMed  CAS  Google Scholar 

  • Serrano A, Aguilar MA, Manzanedo C, Rodriguez-Arias M, Minarro J (2002) Effects of DA D1 and D2 antagonists on the sensitisation to the motor effects of morphine in mice. Prog Neuropsychopharmacol Biol Psychiatry 26:1263–1271

    Article  PubMed  CAS  Google Scholar 

  • Shadach E, Gaisler I, Schiller D, Weiner I (2000) The latent inhibition model dissociates between clozapine, haloperidol, and ritanserin. Neuropsychopharmacology 23:151–161

    Article  PubMed  CAS  Google Scholar 

  • Shin JG, Soukhova N, Flockhart DA (1999) Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro: preferential inhibition of CYP2D6. Drug Metab Dispos 27:1078–1084

    PubMed  CAS  Google Scholar 

  • Singh MK, Giles LL, Nasrallah HA (2006) Pain insensitivity in schizophrenia: trait or state marker? J Psychiatr Pract 12:90–102

    Article  PubMed  Google Scholar 

  • Spina E, de Leon J (2007) Metabolic drug interactions with newer antipsychotics: a comparative review. Basic Clin Pharmacol Toxicol 100:4–22

    Article  PubMed  CAS  Google Scholar 

  • van der Weide J, Baalen-Benedek EH, Kootstra-Ros JE (2005) Metabolic ratios of psychotropics as indication of cytochrome P450 2D6/2C19 genotype. Ther Drug Monit 27:478–483

    Article  PubMed  Google Scholar 

  • Warburton EC, Joseph MH, Feldon J, Weiner I, Gray JA (1994) Antagonism of amphetamine-induced disruption of latent inhibition in rats by haloperidol and ondansetron: implications for a possible antipsychotic action of ondansetron. Psychopharmacology (Berl) 114:657–664

    Article  CAS  Google Scholar 

  • Wiegant VM, Ronken E, Kovacs G, De Wied D (1992) Endorphins and schizophrenia. Prog Brain Res 93:433–453

    Article  PubMed  CAS  Google Scholar 

  • Wines JD Jr, Weiss RD (1999) Opioid withdrawal during risperidone treatment. J Clin Psychopharmacol 19:265–267

    Article  PubMed  Google Scholar 

  • Zarrindast MR, Zarghi A (1992) Morphine stimulates locomotor activity by an indirect dopaminergic mechanism: possible D-1 and D-2 receptor involvement. Gen Pharmacol 23:1221–1225

    PubMed  CAS  Google Scholar 

  • Zarrindast MR, Dinkoub Z, Homayoun H, Bakhtiarian A, Khavandgar S (2002) Dopamine receptor mechanism(s) and morphine tolerance in mice. J Psychopharmacol 16:261–266

    Article  PubMed  CAS  Google Scholar 

  • Zhang CS, Tan Z, Lu L, Wu SN, He Y, Gu NF, Feng GY, He L (2004) Polymorphism of prodynorphin promoter is associated with schizophrenia in Chinese population. Acta Pharmacol Sin 25:1022–1026

    PubMed  CAS  Google Scholar 

  • Zhao ZQ, Gao YJ, Sun YG, Zhao CS, Gereau RW, Chen ZF (2007) Central serotonergic neurons are differentially required for opioid analgesia but not for morphine tolerance or morphine reward. Proc Natl Acad Sci USA 104:14519–14524

    Article  PubMed  CAS  Google Scholar 

  • Zuckerman L, Rehavi M, Nachman R, Weiner I (2003) Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology 28:1778–1789

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The professional technical assistance of Petra Dehmel, Doreen Heidemann, Sandra Heller, Beate Reuter, and Gabriele Schulze is gratefully acknowledged. This study was supported by the Bundesministerium für Bildung und Forschung (NBL3).

Disclosure/conflict of interest

The authors have no financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, A., Grecksch, G., Zernig, G. et al. Haloperidol and risperidone have specific effects on altered pain sensitivity in the ketamine model of schizophrenia. Psychopharmacology 202, 579–587 (2009). https://doi.org/10.1007/s00213-008-1336-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1336-z

Keywords

Navigation