Acute nicotine changes dynorphin and prodynorphin mRNA in the striatum

Abstract

Rationale

Nicotine displays rewarding and aversive effects, and while dopamine has been linked with nicotine’s reward, the neurotransmitter(s) involved with aversion remains speculative. The κ-dynorphinergic system has been associated with negative motivational and affective states, and whether dynorphin (Dyn) contributes to the behavioral pharmacology of nicotine is a pertinent question.

Objective

We determined whether administration of a single dose of nicotine alters the biosynthesis of Dyn in the striatum of mice.

Results

Nicotine free base, 1 mg/kg, sc, induced a biphasic, protracted increase of striatal Dyn, an initial rise by 1 h, which declined to control levels by 2 h, and a subsequent increase, between 6 and 12 h, lasting over 24 h. At 1 h, the nicotine effect was dose dependent, with doses ≥0.5 mg/kg inducing a response. Prodynorphin mRNA increased by 30 min for over 24 h, and in situ hybridization demonstrated elevated signal in caudate/putamen and nucleus accumbens. The nicotinic antagonist mecamylamine prevented the Dyn response, and a similar effect was observed with D1- and D2-like dopamine receptor antagonists, SCH 23390, sulpiride, and haloperidol. The glutamate NMDA receptor antagonist MK-801 reversed the nicotine-induced increase of Dyn, while the AMPA antagonist NBQX had a marginal effect.

Conclusions

We interpret our findings to indicate that acute nicotine enhances the synthesis and release of striatal Dyn. We propose that nicotine influences Dyn primarily through dopamine release and that glutamate plays a modulatory role. A heightened dynorphinergic tone may contribute to the aversive effects of nicotine in naive animals and first-time tobacco smokers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adams DH, Hanson GR, Keefe KA (2000) Cocaine and methamphetamine differentially affect opioid peptide mRNA expression in the striatum. J Neurochem 75:2061–2070

    PubMed  Article  CAS  Google Scholar 

  2. Adams DH, Hanson GR, Keefe KA (2003) Distinct effects of methamphetamine and cocaine on preprodynorphin messenger RNA in rat striatal patch and matrix. J Neurochem 84:87–93

    PubMed  Article  CAS  Google Scholar 

  3. Angulo JA, McEwen BS (1994) Molecular aspects of neuropeptide regulation and function in the corpus striatum and nucleus accumbens. Brain Res Rev 19:1–28

    PubMed  Article  Google Scholar 

  4. Bals-Kubik R, Ableiter A, Hertz A, Shippenberg TS (1993) Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J Pharmacol Exp Ther 264:489–495

    PubMed  CAS  Google Scholar 

  5. Carlezon WA Jr, Beguin C, DiNieri JA, Bauman MH, Richards MR, Todtenkopf MS, Rotham RB, Maz Z, Lee D-Y-W, Cohen BM (2006) Depressive like effects of the κ-opioid receptor agonist salvinorin A on behavior and neurochemistry in rats. J Pharmacol Exp Ther 316:440–447

    PubMed  Article  CAS  Google Scholar 

  6. Catarzi D, Colotta V, Varano F (2007) Competitive AMPA receptor antagonists. Medicinal Res Rev 27:239–278

    Article  CAS  Google Scholar 

  7. Dhatt R, Gudehithlu KP, Wemlinger TA, Tejwani GA, Neff NH, Hadjiconstantinou M (1995) Preproenkephalin mRNA and methionine–enkephalin content are increased in mouse striatum after treatment with nicotine. J Neurochem 64:1878–1883

    PubMed  CAS  Article  Google Scholar 

  8. Di Chiara G (2000) Role of dopamine in the behavioral actions of nicotine related to addiction. Eur J Pharmacol 393:295–314

    PubMed  Article  Google Scholar 

  9. Di Chiara G, Imperato A (1988a) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    PubMed  Article  Google Scholar 

  10. Di Chiara G, Imperato A (1988b) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 244:1067–1080

    PubMed  Google Scholar 

  11. Fasano S, Brambilla R (2002) Cellular mechanisms of striatum-dependent behavioral plasticity and drug addiction. Curr Mol Med 2:649–665

    PubMed  Article  CAS  Google Scholar 

  12. Foulds J, Stapelton JA, Bell N, Swettenham J, Jarvis MJ, Russell MAH (1997) Mood and physiological effects of subcutaneous nicotine in smokers and never smokers. Drug and Alcohol Depend 44:105–115

    Article  CAS  Google Scholar 

  13. Fu Y, Matta SG, Gao W, Brower VG, Sharp BM (2000) Systemic nicotine stimulates dopamine release in nucleus accumbens: re-evaluation of the role of N-methyl-D-aspartate receptors in the ventral tegmental area. J Pharmacol Exp Ther 294:458–465

    PubMed  CAS  Google Scholar 

  14. Fudala PJ, Teoh KW, Iwamoto ET (1985) Pharmacologic characterization of nicotine-induced conditioned place preference. Pharmacol Biochem Behav 22:237–241

    PubMed  Article  CAS  Google Scholar 

  15. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    PubMed  Article  CAS  Google Scholar 

  16. Gerfen CR, McGinty JF, Young WS III (1991) Dopamine differentially regulates dynorphin, substance P, and enkephalin expression in striatal neurons: in situ hybridization histochemical analysis. J Neurosci 11:1016–1031

    PubMed  CAS  Google Scholar 

  17. Gommans J, Stolerman IP, Shoaib M (2000) Antagonism of the discriminative and aversive stimulus properties of nicotine in C57BL/6J mice. Neuropharmacology 39:2840–2847

    PubMed  Article  CAS  Google Scholar 

  18. Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends in Pharmacol Sci 27:482–491

    Article  CAS  Google Scholar 

  19. Grenhoff J, Aston-Jones G, Svensson TH (1986) Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiol Scand 128:351–358

    PubMed  CAS  Article  Google Scholar 

  20. Hadjiconstantinou M, Isola R, Colvin A, Tejwani GA, Neff NH, Duchemin A-M (2002) Altered dynorphin in the striatum after acute nicotine or nicotine withdrawal. J Neurochem 81(Suppl 1):AP04–06

    Google Scholar 

  21. Hanson GR, Merchant KM, Letter AA, Bush L, Gibb JW (1987) Methamphetamine-induced changes in the striatal–nigral dynorphin system: role of D-1 and D-2 receptors. Eur J Pharmacol 144:245–246

    PubMed  Article  CAS  Google Scholar 

  22. Hanson GR, Merchant KM, Bush L, Gibb JW (1988) Characterization of methamphetamine effects on the striata–nigral dynorphin system. Eur J Pharmacol 155:11–18

    PubMed  Article  CAS  Google Scholar 

  23. Heishman SJ, Henningfield JF (2000) Tolerance to repeated nicotine administration on performance, subjective, and physiological responses in nonsmokers. Psychopharmacology 152:321–333

    PubMed  Article  CAS  Google Scholar 

  24. Hertz A (1998) Opioid reward mechanisms: a key role in drug abuse? Can J Pharmacoll 76:252–258

    Article  Google Scholar 

  25. Hjelmstad GO, Fields HL (2003) Kappa opioid receptor activation in the nucleus accumbens inhibits glutamate and GABA release through different mechanisms. J Neurophysiol 89:2389–2395

    PubMed  Article  CAS  Google Scholar 

  26. Houdi AA, Pierzchala K, Marson L, Palkovits M, Van Loon GR (1991) Nicotine-induced alteration in Tyr-Gly-Gly and met-enkephalin in discrete brain nuclei reflects altered enkephalin neuron activity. Peptides 12:161–166

    PubMed  Article  CAS  Google Scholar 

  27. Houdi AA, Dasgupta R, Kindy MS (1998) Effect of nicotine use and withdrawal on brain preproenkephalin A mRNA. Brain Res 799:257–263

    PubMed  Article  CAS  Google Scholar 

  28. Hurd YL, Herkenham M (1992) Influence of a single injection of cocaine, amphetamine or GBR 12909 on mRNA expression of striatal neuropeptides. Mol Brain Res 16:97–104

    PubMed  Article  CAS  Google Scholar 

  29. Ise Y, Narita M, Nagase H, Suzuki T (2000) Modulation of opioidergic system on mecamylamine-precipitated nicotine-withdrawal aversion in rats. Psychopharmacology 151:49–54

    PubMed  Article  CAS  Google Scholar 

  30. Ismail Z, el-Guebaly N (1998) Nicotine and endogenous opioids: toward specific pharmacotherapy. Can J Psychiatry 43:37–42

    PubMed  CAS  Google Scholar 

  31. Isola R, Vogelsberg V, Wemlinger TA, Neff NH, Hadjiconstantinou M (1999) Nicotine abstinence in the mouse. Brain Res 850:189–196

    PubMed  Article  CAS  Google Scholar 

  32. Isola R, Duchemin A-M, Tejwani GA, Neff NH, Hadjiconstantinou M (2000) Glutamate receptors participate in the nicotine-induced changes of met-enkephalin in striatum. Brain Res 878:72–78

    PubMed  Article  CAS  Google Scholar 

  33. Isola R, Zhang H, Duchemin A-M, Tejwani GA, Neff NH, Hadjiconstantinou M (2002) Met-enkephalin and preproenkephalin mRNA changes in the striatum of the nicotine abstinense mouse. Neurosci Lett 325:67–71

    PubMed  Article  CAS  Google Scholar 

  34. Isola R, Zhang H, Tejwani GA, Neff NH, Hadjiconstantinou M (2008) Dynorphin and prodynorphin mRNA changes in the striatum during nicotine withdrawal. Synapse 62:448–455

    PubMed  Article  CAS  Google Scholar 

  35. Kenny PJ, Markou A (2001) Neurobiology of the nicotine withdrawal syndrome. Pharmacol Biochem Behav 70:531–549

    PubMed  Article  CAS  Google Scholar 

  36. Koob GF, Nestler EJ (1997) The neurobiology of drug addiction. J Neuropsych Clin Neurosci 9:482–497

    CAS  Google Scholar 

  37. Kosowski AR, Cebers G, Cebere A, Swanhagen A-C, Liljequist S (2002) Nicotine-induced dopamine release in the nucleus accumbens is inhibited by the novel AMPA antagonists ZK200775 and the NMDA antagonist CGP39551. Psychopharmacology 175:114–123

    Google Scholar 

  38. Laviolette SR, van der Kooy D (2003a) Blockade of mesolimbic dopamine transmission dramatically increases sensitivity to the rewarding effects of nicotine in the ventral tegmental area. Mol Psychiatry 8:50–59

    PubMed  Article  CAS  Google Scholar 

  39. Laviolette SR, van der Kooy D (2003b) The motivational valence of nicotine in the rat ventral tegmental area is switched from rewarding to aversive following blockade of the α7-subunit-containing nicotinic acetylcholine receptor. Psychopharmacology 166:306–313

    PubMed  CAS  Google Scholar 

  40. Le Foll B, Goldberg SR (2005) Nicotine induces conditioned place preferences over a large range of doses in rats. Psychopharmacology 178:481–492

    PubMed  Article  CAS  Google Scholar 

  41. Le Foll B, Diaz J, Sokoloff P (2003) Increased dopamine D3 receptor expression accompanying behavioral sensitization to nicotine in rats. Synapse 47:176–183

    PubMed  Article  CAS  Google Scholar 

  42. Lundahl LH, Henningfield JE, Lukas SE (2000) Mecamylamine blockade of both positive and negative effects of IV nicotine in human volunteers. Pharmacol Biochem Behav 66:637–643

    PubMed  Article  CAS  Google Scholar 

  43. Malin DH, Lake JR, Newlin-Maultsby P, Roberts LK, Lanier JG, Carter VA, Cunninghan JS, Wilson OB (1992) Rodent model of nicotine abstinence syndrome. Pharmacol Biochem Behav 43:779–784

    PubMed  Article  CAS  Google Scholar 

  44. Malin DH, Lake RJ, Carter VA, Cunningham JS, Wilson OB (1993) Naloxone precipitates nicotine abstinence syndrome in the rat. Psychopharmacology 112:339–342

    PubMed  Article  CAS  Google Scholar 

  45. Mathieu-Kia A-M, Besson M-J (1998) Administration of cocaine, nicotine and ethanol: effects on preprodynorphin, preprotachykinin A and preproenkephalin mRNA expression in the dorsal and ventral striatum of the rat. Mol Brain Res 54:141–151

    PubMed  Article  CAS  Google Scholar 

  46. Mathieu A-M, Caboche J, Besson M-J (1996) Distribution of preproenkephalin, preprotachykinin A, and preprodynorphin A mRNAs in the rat nucleus accumbens. Effect of repeated nicotine administration. Synapse 23:94–106

    PubMed  Article  CAS  Google Scholar 

  47. McGinty JF (2007) Co-localization of GABA with other neuroactive substances in the basal ganglia. Prog Brain Res 160:273–284

    PubMed  Article  CAS  Google Scholar 

  48. McLauglin JP, Marton-Popovici M, Chavkin C (2003) κ Opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J Neurosci 23:5674–5683

    Google Scholar 

  49. Mucha RF, Hertz A (1985) Motivational properties of κ- and µ-opioid receptor agonists studied with place and taste preference conditioning procedure. Psychopharmacology 86:274–280

    PubMed  Article  CAS  Google Scholar 

  50. Paxinos G, Franklin BL (2001) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  51. Pescatore KA, Glowa JR, Riley AL (2005) Strain differences in the acquisition of nicotine-induced conditioned taste aversion. Pharmacol Bochem Behav 82:751–757

    Article  CAS  Google Scholar 

  52. Pfeiffer A, Brandl V, Herz A, Emrich HM (1986) Psychomimesis mediated by kappa opiate receptors. Science 223:774–776

    Article  Google Scholar 

  53. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, Fuxe K, Changeux J-P (1998) Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    PubMed  Article  CAS  Google Scholar 

  54. Pierzcala K, Houdi AA, Van Loon GR (1987) Nicotine-induced alterations of brain regional concentrations of native and cryptic met-and leu-enkephalin. Peptides 8:1035–1043

    Article  Google Scholar 

  55. Pomerleau OF (1998) Endogenous opioids and smoking: a review of progress and problems. Psychopharmacology 23:115–130

    CAS  Google Scholar 

  56. Risinger FO, Oakes RA (1995) Nicotine-induced conditioned place preference and conditioned place aversion in mice. Pharmacol Biochem Behav 51:457–461

    PubMed  Article  CAS  Google Scholar 

  57. Risinger FO, Brown MM (1996) Genetic differences in nicotine-induced conditioned taste aversion. Life Sci 58:223–229

    PubMed  Article  CAS  Google Scholar 

  58. Schilström B, Nomikos GG, Nissel M, Hertel P, Svensson TH (1998) N-Methyl-D-aspartate receptor antagonism in the ventral tegmental area diminishes the systemic nicotine-induced dopamine release in the nucleus accumbens. Neuroscience 82:781–789

    PubMed  Article  Google Scholar 

  59. Shippenberg TS, Zapata A, Chefer VI (2007) Dynorphin and the pathophysiology of drug addiction. Pharmacol Ther 116:306–321

    PubMed  Article  CAS  Google Scholar 

  60. Shirayama Y, Ishida H, Iwata M, Hazama G, Kawahara R, Duman RS (2004) Stress increases dynorphin immunoreactivity in limbic brain regions and dynorphin antagonism produces anti-depressant-like effects. J Neurochem 90:1258–1268

    PubMed  Article  CAS  Google Scholar 

  61. Shoaib M, Gommans J, Morley A, Stolerman IP, Graillhe R, Changeux JP (2002) The role of nicotinic receptor beta-2 subunit in nicotine discrimination and conditional taste aversion. Neuropharmacology 42:530–539

    PubMed  Article  CAS  Google Scholar 

  62. Singh NA, Midgley LP, Bush LG, Gibb JW, Hanson GR (1991) N-Methyl-D-aspartate receptors mediate dopamine-induced changes in extrapyramidal and limbic dynorphin systems. Brain Res 555:233–238

    PubMed  Article  CAS  Google Scholar 

  63. Sivam SP (1989) Cocaine selectively increases striatonigral dynorphin levels by a dopaminergic mechanism. J Pharmacol Exp Ther 250:818–824

    PubMed  CAS  Google Scholar 

  64. Smith AJW, McGinty JF (1994) Acute amphetamine and methamphetamine alters opioid peptide mRNA expression in rat striatum. Mol Brain Res 21:359–362

    PubMed  Article  CAS  Google Scholar 

  65. Spanagel R, Herz A, Shippenberg TS (1990) The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study. J Neurochem 55:1734–1740

    PubMed  Article  CAS  Google Scholar 

  66. Spanagel R, Herz A, Shippenberg TS (1992) Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci U.S.A. 89:2046–2050

    PubMed  Article  CAS  Google Scholar 

  67. Steiner H, Gerfen CR (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp Brain Res 123:60–76

    PubMed  Article  CAS  Google Scholar 

  68. Sziraki I, Sershen H, Benuck M, Hashim A, Lajtha A (1998) Receptor systems participating in nicotine-specific effects. Neurochem Int 33:445–457

    PubMed  Article  CAS  Google Scholar 

  69. Sziraki I, Sershen H, Hashim A, Lajtha A (2002) Receptors in the ventral tegmental area mediating nicotine-induced dopamine release in the nucleus accumbens. Neurochem Res 27:253–2621

    PubMed  Article  CAS  Google Scholar 

  70. Todtenkopf MS, Marcus JF, Portoghese PS, Carlezon WA Jr (2004) Effects of kappa-opioid receptor ligands on intracranial self-stimulation in rats. Psychopharmacology 172:463–470

    PubMed  Article  CAS  Google Scholar 

  71. Toth E, Sershen H, Hashim A, Vizi ES, Lajtha A (1992) Effect of nicotine on extracellular levels of neurotransmitters assessed by microdialysis in various brain regions: role of glutamic acid. Neurochem Res 17:265–271

    PubMed  Article  CAS  Google Scholar 

  72. Trujillo KA, Day R, Akil K (1990) Regulation of striatonigral prodynorphin peptides by dopaminergic agents. Brain Res 518:244–256

    PubMed  Article  CAS  Google Scholar 

  73. Trujillo KA, Bronstein DM, Akil K (1993) Regulation of opioid peptides by self-administered drugs. In: Hammer RP Jr (ed) The neurobiology of opiates. CRC, USA, pp 223–255

    Google Scholar 

  74. Wang JQ, McGinty JF (1995) Dose-dependent alteration of zif/268 and preprodynorphin mRNA expression induced by amphetamine or methamphetamine in rat forebrain. J Pharmacol Exp Ther 273:909–917

    PubMed  CAS  Google Scholar 

  75. Wang JQ, McGinty JF (1996a) D1 and D2 receptor regulation of preproenkephalin and preprodynorphin mRNA in rat striatum following acute injection of amphetamine or methamphetamine. Synapse 22:114–122

    PubMed  Article  Google Scholar 

  76. Wang JQ, McGinty JF (1996b) Acute methamphetamine-induced zif/268, preprodynorphin, and preproenkephalin mRNA expression in rat striatum depends on activation of NMDA and kainate/AMPA receptors. Brain Res Bulletin 39:349–357

    Article  CAS  Google Scholar 

  77. Wang JQ, Smith AJW, McGinty JF (1995) A single injection of amphetamine or methamphetamine induces dynamic alterations in c-fos, zif/268 and preprodynorphin messenger RNA expression in rat forebrain. Neuroscience 68:83–95

    PubMed  Article  CAS  Google Scholar 

  78. Watkins SS, Stinus L, Koob GF, Markou A (2000) Reward and somatic changes during precipitated nicotine withdrawal in rats: centrally and peripherally mediated effects. J Pharmacol Exp Ther 292:1053–1064

    PubMed  CAS  Google Scholar 

  79. Wewers ME, Dhatt RK, Snively TA, Tejwani GA (1999) The effect of chronic administration of nicotine on antinociception, opioid receptor binding and met-enkephalin levels in rats. Brain Res 822:107–113

    PubMed  Article  CAS  Google Scholar 

  80. Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones IW (2000) Presynaptic receptors modulating dopamine release in the rat striatum. Eur J Pharmacol 393:51–58

    PubMed  Article  CAS  Google Scholar 

  81. Wonnacott S, Sidhpura N, Balfour DJK (2005) Nicotine: from molecular mechanisms to behaviour. Curr Opin Pharmacol 5:53–59

    PubMed  Article  CAS  Google Scholar 

  82. Zimmer A, Valjent E, Konig M, Zimmer AM, Robledo P, Hahn H, Valverdre O, Maldonado R (2001) Absence of Δ-9-tetrahydrocannabinol dysphoric effects in dynorphin-deficient mice. J Neurochem 21:9499–9505

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Hadjiconstantinou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Isola, R., Zhang, H., Tejwani, G.A. et al. Acute nicotine changes dynorphin and prodynorphin mRNA in the striatum. Psychopharmacology 201, 507–516 (2009). https://doi.org/10.1007/s00213-008-1315-4

Download citation

Keywords

  • Nicotine
  • Dynorphin
  • Prodynorphin
  • Striatum
  • Acetylcholine nAChR receptors
  • Dopamine D1 and D2 receptors
  • Glutamate NMDA and AMPA receptors