Skip to main content
Log in

Reduction in the latency of action of antidepressants by 17 β-estradiol in the forced swimming test

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Antidepressants (ADs) are slow to produce their therapeutic effect. This long latency promotes the development of new strategies to short their onset of action. Previous reports indicated that 17β-estradiol (E2) promotes the antidepressant-like activity of fluoxetine (FLX) and desipramine (DMI) in the forced swimming test (FST).

Objective

The aim of the present work was to analyze if E2 reduces the antidepressant-like onset of action of venlafaxine (VLX), FLX, and DMI.

Materials and methods

Independent groups of ovariectomized female Wistar rats were tested in the FST and in the open field after chronic (1 to 14 days) treatment with VLX (20 mg/kg/day), FLX (1.25 mg/kg/day), or DMI (1.25 mg/kg/day) alone or in combination with a single injection of E2 (2.5 μg/rat sc, 8 h before FST).

Results

VLX, FLX, or DMI by themselves at these doses did not induce changes in the FST at short intervals after their injection (from 1 to 7 days). The addition of E2 promoted the antidepressant-like effect of VLX and DMI as early as day 1. Such action was also evident after 3, for FLX, and 14 days for both FLX and DMI, but not for VLX. The behavioral actions of these ADs combined with E2 were not accompanied by increases in general activity in the open-field test.

Conclusion

E2 clearly reduced the latency to the onset of action for these ADs in the FST. These results represent an interesting therapeutic strategy for the treatment of depression in perimenopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves SE, Hoskin E, Lee SJ, Brake WG, Ferguson D, Luine V, Allen PB, Greengard P, McEwen BS (2002) Serotonin mediates CA1 spine density but is not crucial for ovarian steroid regulation of synaptic plasticity in the adult rat dorsal hippocampus. Synapse 45:143–151

    Article  PubMed  CAS  Google Scholar 

  • Amin Z, Camli T, Epperson NC (2005) Effect of estrogen–serotonin interactions on mood and cognition. Behav & Cog Neurosci Rev 4:43–58

    Article  Google Scholar 

  • Amsterdam J, García-España F, Fawett J, Quitkin F, Reimherr F, Rosenbaum J, Beasley C (1999) Fluoxetine efficacy in menopausal women with and without estrogen replacement. J Affec Disord 55:11–17

    Article  CAS  Google Scholar 

  • Ansonoff MA, Etgen AM (2000) Evidence that oestradiol attenuates beta-adrenoceptor function in the hypothalamus of female rats by altering receptor phosphorylation and sequestration. J Neuroendocrinol 12:1060–1066

    Article  PubMed  CAS  Google Scholar 

  • Ansonoff MA, Etgen AM (2001) Receptor phosphorylation mediates estradiol reduction of alpha2-adrenoceptor coupling to G protein in the hypothalamus of female rats. Endocrine 14:165–174

    Article  PubMed  CAS  Google Scholar 

  • Artigas F, Pérez V, Alvarez E (1994) Pindolol induces a rapid improvement of depressed patients treated with serotonin reuptake inhibitors. Arch Gen Psychiatr 51:248–251

    PubMed  CAS  Google Scholar 

  • Austin MP, Souza FG, Goodwin GM (1991) Lithium augmentation in antidepressant-resistant patients. A quantitative analysis. Br J Psychiatr 159:510–514

    Article  CAS  Google Scholar 

  • Banasr M, Hery M, Brezun JM, Daszuta A (2001) Serotonin mediates oestrogen stimulation of cell proliferation in the adult dentate gyrus. Eur J Pharmacol 14:1417–1424

    CAS  Google Scholar 

  • Bauer M, Döpfmer S (1999) Lithium augmentation in treatment-resistant depression: meta-analysis of placebo controlled studies. J Clin Psychopharmacol 19:427–434

    Article  PubMed  CAS  Google Scholar 

  • Bëique J, de Montigny C, Blier P, Debonnel G (1998) Blockade of 5-hydroxytryptamine and noradrenaline uptake by venlafaxine: a comparative study with paroxetine and desipramine. Br J Pharmacol 125:526–532

    Article  PubMed  Google Scholar 

  • Bëique J, de Montigny C, Blier P, Debonnel G (2000) Effects of sustained administration of serotonin and norepinephrine reuptake inhibitor venlafaxine: I. In vivo electrophysiological studies in the rat. Neuropharmacology 39:1800–1812

    Article  PubMed  Google Scholar 

  • Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7:137–151

    Article  PubMed  CAS  Google Scholar 

  • Bethea CL, Pecins-Thompson M, Schutzer W, Gundlah C, Lu Z (1998) Ovarian steroids and serotonin neural function. Mol Neurobiol 18:87–122

    Article  PubMed  CAS  Google Scholar 

  • Blier P, Bergeron R (1995) Effectiveness of pindolol with selected anti-depressant drugs in the treatment of major depression. J Clin Psychopharmacol 15:217–222

    Article  PubMed  CAS  Google Scholar 

  • Borsini F, Meli A (1988) Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology (Berl) 94:127–160

    Article  Google Scholar 

  • Brake W, Alves S, Dunlop J, Lee S, Bulloch K, Allen P, Greendard P, McEwen B (2001) Novel target sites for estrogen action in the dorsal hippocampus: an examination of synaptic proteins. Endocrinology 142:1284–1289

    Article  PubMed  CAS  Google Scholar 

  • Carrasco GA, Barker SA, Zhang Y, Damjanoska KJ, Sullivan N, Garcia F, D’Souza DN, Muma N, Van de Kar LD (2004) Estrogen treatment increases the levels of regulator of G protein signaling-Z1 in the hypothalamic paraventricular nucleus: possible role in desensitization of 5-Hydroxytryptamine1A receptors. Neuroscience 127:261–267

    Article  PubMed  CAS  Google Scholar 

  • Carrol D (2006) Non-hormonal therapies for hot flashes in menopause. Am Fam Physician 73:457–464

    Google Scholar 

  • Connor TJ, Kelliher P, Shen Y, Harkin A, Kelly JP, Leonard BE (2000) Effect of sub-chronic antidepressant treatments on behavioral, neurochemical, and endocrine changes in the forced-swim test. Pharmacol Biochem Behav 65:591–597

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Page M, Lucki I (2005a) Differential behavioral effects of the antidepressants reboxetine, fluoxetine and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology 182:335–344

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Valentino R, Lucki I (2005b) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 29:547–569

    Article  PubMed  CAS  Google Scholar 

  • Curran-Rauhut MA, Petersen SL (2003) Oestradiol-dependent and -independent modulation of tyrosine hydroxylase mRNA levels in subpopulations of A1 and A2 neurones with oestrogen receptor (ER)alpha and ER beta gene expression. J Neuroendocrinol 15:296–303

    Article  PubMed  CAS  Google Scholar 

  • Detke M, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially activated by serotonergic and noradrenergic antidepressants. Psychopharmacology 121:66–72

    Article  PubMed  CAS  Google Scholar 

  • Detke M, Johnson J, Lucki I (1997) Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. Exp Clin Psychopharmacol 5:107–112

    Article  PubMed  CAS  Google Scholar 

  • Dias R, Kerr-Correa F, Moreno R, Trinca LA, Pontes A, Halbe HW, Gianfaldoni A, Dalben I (2006) Efficacy of hormone therapy with and without methyltestosterone augmentation of venlafaxine in the treatment of postmenopausal depression: a double-blind controlled pilot study. Menopause 13:202–211

    Article  PubMed  Google Scholar 

  • Duman R (1999) The neurochemistry of mood disorders: preclinical studies. In: Charney D, Nestler E, Bunney B (eds) Neurobiology of mental illness,. 1st edn. Oxford University Press, Oxford, pp 333–347

    Google Scholar 

  • Eser E, Romeo E, Baghai TC, Di Michele F, Schüle C, Pasini A, Zwanzger P, Padberg F, Rupprecht R (2006) Neuroactive steroids as modulators of depression and anxiety. Neuroscience 138:1041–1048

    Article  PubMed  CAS  Google Scholar 

  • Estrada-Camarena E, Fernandez-Guasti A, Lopez-Rubalcava L (2003) Antidepressant-like effect of different estrogenic compounds in the forced swimming test. Neuropsychopharmacology 28:830–838

    PubMed  CAS  Google Scholar 

  • Estrada-Camarena E, Fernández-Guasti A, López-Rubalcava C (2004) Interaction between estrogens and antidepressants in the FST in rats. Psychopharmacology 173:139–145

    Article  PubMed  CAS  Google Scholar 

  • Estrada-Camarena E, Fernández Guasti A, López-Rubalcava C (2006a) Participation of the 5-HT1A receptors in the antidepressant-like action of estrogens in the forced swimming test. Neuropsychopharmacology 31:247–255

    Article  PubMed  CAS  Google Scholar 

  • Estrada-Camarena E, López-Rubalcava C, Fernández-Guasti A (2006b) Facilitating antidepressant-like actions of estrogens are mediated by 5-HT1A and estrogen receptors in the forced swimming test. Psychoneuroendocrinology 31:905–14

    Article  PubMed  CAS  Google Scholar 

  • Etgen AM, Ansonoff MA, Quesada A (2001) Mechanisms of ovarian steroid regulation of norepinephrine receptor-mediated signal transduction in the hypothalamus: implications for female reproductive physiology. Horm Behav 40:169–177

    Article  PubMed  CAS  Google Scholar 

  • Galea LA (2008) Gonadal hormone modulation of neurogenesis in the dentate gyrus of adult male and female rodents. Brain Res Reviews 57:332–341

    Article  CAS  Google Scholar 

  • Galea L, Wide J, Barr A (2001) Estradiol alleviates depressive-like symptoms in a novel animal model of post-partum depression. Behav Brain Res 122:1–9

    Article  PubMed  CAS  Google Scholar 

  • Genazzani A, Spinetti A, Gallo R, Bernardi F (1999) Menopause and the central nervous system: intervention options. Maturitas 31:103–110

    Article  PubMed  CAS  Google Scholar 

  • Ghraf R, Michel M, Hiemke C, Knuppen R (1983) Competition by monophenolic estrogens and catecholestrogens for high-affinity uptake of [3H] (-)-norepinephrine into synaptosomes from rat cerebral cortex and hypothalamus. Brain Res 277:163–168

    Article  PubMed  CAS  Google Scholar 

  • Griffin LD, Mellon S (1999) Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. PNAS 96:13512–13517

    Article  PubMed  CAS  Google Scholar 

  • Gur E, Dremencov E, Lerer B, Newman ME (1999) Venlafaxine: acute and chronic effects on 5-hydrytryptamine levels in rat brain in vivo. Eur J Pharmacol 372:17–24

    Article  PubMed  CAS  Google Scholar 

  • Halbreich U, Kahn L (2001) Role of estrogen in the aetiology and treatment of mood disorders. CNS Drugs 15:797–817

    Article  PubMed  CAS  Google Scholar 

  • Holschneider D, Kumazawa T, Chen K, Shih J (1998) Tissue specific effects of estrogen on monoamino oxidase A and B in the rat. Life Sci 63:155–160

    Article  PubMed  CAS  Google Scholar 

  • Jackson A, Uphouse L (1998) Dose dependent effects of estradiol benzoate on the 5-HT1A receptor agonist action. Brain Res 796:299–302

    Article  PubMed  CAS  Google Scholar 

  • Karkanias G, Etgen A (1993) Estradiol attenuates α2-adrenoceptor-mediated inhibition of hypothalamic norepinephrine release. J Neurosc 13:3448–3455

    CAS  Google Scholar 

  • Larsen MH, Hay-Schmidt A, Ronn LC, Mikkelsen JD (2008) Temporal expression of brain-derived neurotrophic factor (BDNF) mRNA in the rat hippocampus after treatment with selective and mixed monoaminergic antidepressants. Eur J Pharmacol 578:144–122

    Article  CAS  Google Scholar 

  • Li Q, Muma A, Van de Kar L (1996) Chronic fluoxetine induces a gradual desensitization of 5-HT1A receptors: reductions in hypothalamic and midbrain Gi and G0 proteins and in neuroendocrine responses to 5-HT1A agonist. J Pharmacol Exp Ther 279:1035–1042

    PubMed  CAS  Google Scholar 

  • López-Rubalcava C, Oikawa-Sala J, Chávez-Álvarez K, Estrada-Camarena E (2005) Analysis of the participation of the serotonergic system in the antidepressant-like action of 17beta -estradiol in the forced swimming test (FST): presynaptic or postsynaptic actions Program No. 567.12. 2005 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2005. Online

  • López-Rubalcava C, Vega Rivera NM, Cruz-Martínez JJ, Estrada-Camarena E (2007) Participation of both estrogen and alpha2-receptors in the antidepressant-like actions of ethynil-estradiol in rats tested in the forced swimming test. 12th Biennial meeting of the European Behavioral Pharmacology Society

  • Lucki I (1997) The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol 8:523–532

    Article  PubMed  CAS  Google Scholar 

  • Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44:151–162

    Article  PubMed  CAS  Google Scholar 

  • Ma Z-Q, Violani E, Villa F, Picotti G, Maggi A (1995) Estrogenic control of monoamine oxidase A activity in human neuroblastoma cells expressing physiological concentrations of estrogen receptor. Eur J Pharmacol 284:171–176

    Article  PubMed  CAS  Google Scholar 

  • Marx C, Stevens R, Shampine LJ, Uzunova V, Trost WT, Butterfield MI, Massing MW, Hamer R, Morrow AL, Lieberman JA (2006) Neuroactive steroids are altered in schizophrenia and bipolar disorder: relevance to pathophysiology and therapeutics. Neuropsychopharmacology 31:1249–1263

    PubMed  CAS  Google Scholar 

  • McEwen BS (2001) Genome and hormones: gender differences in physiology invited review: estrogen effects on the brain: multiple sites and molecular mechanisms. J Appl Physiol 91:2785–2801

    PubMed  CAS  Google Scholar 

  • Mendelson S, McKittrick C, McEwen B (1993) Autoradiographic analyses of the effects of estradiol benzoate on [ 3H]paroxetine binding in the cerebral cortex and dorsal hippocampus of gonadectomized male and female rats. Brain Res 601:299–302

    Article  PubMed  CAS  Google Scholar 

  • Michel M, Rother A, Hiemke C, Ghraf R (1987) Inhibition of synaptosomal high-affinity uptake of dopamine and serotonin by estrogen agonists and antagonists. Biochem Pharmacol 36:3175–3180

    Article  PubMed  CAS  Google Scholar 

  • Mize A, Alper R (2000) Acute and long-term effects of 17b-estradiol on Gi/0 coupled neurotransmitter receptor function in female rat brain as assessed by agonist-stimulated [35S] GTPgS binding. Brain Res 859:326–333

    Article  PubMed  CAS  Google Scholar 

  • Mize A, Alper R (2002) Rapid uncoupling of serotonin-1A receptors by 17-b estradiol in vitro requires protein kinases A and C. Neuroendocrinology 76:339–347

    Article  PubMed  CAS  Google Scholar 

  • Mize A, Poisner A, Alper R (2001) Estrogens act in rat hippocampus and frontal cortex to produce rapid, receptor mediated decreases in serotonin 5-HT1A receptor function. Neuroendocrinology 73:166–174

    Article  PubMed  CAS  Google Scholar 

  • Nowakowska E, Kus K (2005) Antidepressant and memory affecting influence of estrogen and venlafaxine in ovariectomized rats. Arzneim-Forsch/Drug Res 55:153–159

    CAS  Google Scholar 

  • Oppenheim G (1983) Estrogen in the treatment of depression: neuropharmacological mechanisms. Biol Psychiatry 18:721–725

    PubMed  CAS  Google Scholar 

  • Ormerod BK, Falconer EM, Galea LA (2003) Estradiol initially enhances but subsequently suppresses (via adrenal steroids) granule cell proliferation in the dentate gyrus of adult female rats. J Neurobiol 55:247–260

    Article  PubMed  CAS  Google Scholar 

  • Owens MJ, Morgan WN, Plott SJ, Nemeroff CB (1997) Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J Pharmacol Exp Ther 283:1305–1322

    PubMed  CAS  Google Scholar 

  • Pérez V, Gilaberte I, Faries D, Alvarez E, Artigas F (1997) Randomised, doble-blind, placebo-controlled trial of pindolol in combination with fluoxetine

  • Porsolt R, Lenègre A (1992) Behavioural models of depression. In: Elliot J, Heal D, Maisden C (eds) Experimental approaches to anxiety and depression. Wiley, New York, pp 73–85

    Google Scholar 

  • Porsolt R, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  PubMed  CAS  Google Scholar 

  • Porsolt R, Anton G, Blavet N, Jalfre M (1978) Behavioral despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  PubMed  CAS  Google Scholar 

  • Prange A (1972) Estrogen may well affect response to antidepressant. JAMA 219:143–144

    Google Scholar 

  • Raap D, Don Carlos L, Garcia F, Muma N, Wolf W, Battaglia A, Van de Kar L (2000) Estrogen desensitizes 5-HT1A receptors and reduces levels of Gz,Gi1 and Gi3 proteins in the hypothalamus. Neuropharmacology 39:1823–1832

    Article  PubMed  CAS  Google Scholar 

  • Rachman I, Unnerstall J, Pfaff D, Cohen R (1998) Estrogen alters behavior and forebrain c-fos expression in ovariectomized rats subjected to the forced swim test. Proc Natl Acad Sci USA 95:13941–13946

    Article  PubMed  CAS  Google Scholar 

  • Rénèric JP, Lucki I (1998) Antidepressant behavioral effects by dual inhibition of monoamine reuptake in the rat forced swimming test. Psychopharmacology 136:190–197

    Article  PubMed  Google Scholar 

  • Rénèric JP, Bouvard M, Stinus L (2002) In the rat forced swimming test, NA-system mediated interactions may prevent 5-HT properties of some subacute antidepressant treatments being expressed. Eur Neuropsychopharmacol 12:159–171

    Article  PubMed  Google Scholar 

  • Robinson G (2001) Psychotic and mood disorders associated with the perimenopausal period. Epidemiology, aetiology and management. CNS Drugs 15:175–184

    Article  PubMed  CAS  Google Scholar 

  • Rossi DV, Valdes M, Gould GG, Hensler JG (2006) Chronic administration of venlafaxine fails to atenúate 5-HT1A receptor function at level of receptor-g protein interaction. Int J Neuropsychopharmacol 9:393–406

    Article  PubMed  CAS  Google Scholar 

  • Sanacora G, Zarate C, Krystal J, Manji H (2008) Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drugs Dis 7:426–437

    Article  CAS  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809 Aug 8

    Article  PubMed  CAS  Google Scholar 

  • Scharfman HE, MacLusky NJ (2005) Similarities between action of estrogen and BDNF in the hippocampus: coincidence or clue? Trends Neurosci 28(2):79–85

    Article  PubMed  CAS  Google Scholar 

  • Scharfman HE, MacLusky NJ (2006) Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS. Front Neuroendocrinol 27(4):415–435

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogénesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 18:391–418

    Article  PubMed  CAS  Google Scholar 

  • Schneider M, Small G, Hamilton S, Bystrisky A, Nemeroff C, Meyers B (1997) Estrogen replacement and response to fluoxetine in surgically menopausal women. Am J Geriatr Psychiatr 5:97–106

    CAS  Google Scholar 

  • Schneider L, Small G, Clary CM (2001) Estrogen replacement therapy and antidepressant response to sertraline in older depressed women. Am J Geriatr Psychiatr 9:393–399

    Article  CAS  Google Scholar 

  • Shapira B, Oppenheim G, Zohar J, Segal M, Malach D, Belmaker R (1985) Lack of efficacy of estrogen supplementation to imipramine in resistant female depressives. Biol Psychiatry 20:570–583

    Article  Google Scholar 

  • Shiah IS, Yatman L, Srisurapanont M, Lam R, Tam E, Zis A (2000) Does the addition of pindolol accelerate the response to electroconvulsive therapy in patients with major depression? A double-blind, placebo-controlled pilot study. J Clin Psychopharmacol 20(3):373–378

    Article  PubMed  CAS  Google Scholar 

  • Soma KK, Lakhter SA, Schilinger BA, Micevych PE (2005) Neurosteroids and female reproduction: estrogen increases 3beta-HSD mRNA and activity in rat hypothalamus. Endocrinology 146:4386–4390

    Article  PubMed  CAS  Google Scholar 

  • Somani S, Khurana R (1973) Mechanism of estrogen–imipramine interaction. JAMA 23:560

    Article  Google Scholar 

  • Stahl S (1998) Augmentation of antidepressants by estrogen. Psychopharmacol Bull 34:319–321

    PubMed  CAS  Google Scholar 

  • Uzunova V, Sampson L, Uzunov DP (2006) Relevance of endogenous 3α-reduced neurosteroids to depression and antidepressant action. Psychopharmacology 186:3351–361

    Article  CAS  Google Scholar 

  • Walf AA, Frye CA (2005) Antianxiety and antidepressive behavior produced by physiological estradiol regimen may be modulated by hypothalamic–pituitary–adrenal axis activity. Neuropsychopharmacology 30:1288–1301

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Strobel HW (1997) Regulation of CYP3A9 gene expression by estrogen and catalytic studies using P450 3A9 expressed in Escherichia coli. Arc Biochem Biophys 344:365–372

    Article  CAS  Google Scholar 

  • Weikop P, Kehr J, Scheel-Kruger J (2004) The role of alpha1- and alpha2-adrenoreceptors on venlafaxine-induced elevation of extracellular serotonin, noradrenaline and dopamine levels in the rat prefrontal cortex and hippocampus. J Psychopharmacol 18:395–403

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Richardson S, Li XM (2003) Dose-related effects of chronic antidepressants on neuroprotectíve proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology 28:53–62

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The current study has been carried out with financial support from CONACyT. EE-C thanks Eder Gómez and Sergio Márquez for animal care and technical assistance. Authors thank Dr. Bryan Phillips for language checking. All experimental procedures were performed in accordance with the Mexican official norm for animal care and handling (NOM-062-ZOO-1999) and approved by the Institutional Ethics Committee of the CINVESTAV-IPN and National Institute of Psychiatry ‘Ramón de la Fuente’. The current study has been carried out with financial support from CONACyT (to A.F.-G., F1 61187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fernández-Guasti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estrada-Camarena, E., Vega Rivera, N.M., Berlanga, C. et al. Reduction in the latency of action of antidepressants by 17 β-estradiol in the forced swimming test. Psychopharmacology 201, 351–360 (2008). https://doi.org/10.1007/s00213-008-1291-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1291-8

Keywords

Navigation