Skip to main content
Log in

Nesfatin-1 increases anxiety- and fear-related behaviors in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Nesfatin-1, derived from the protein NEFA/nucleobindin2 (NUCB2), is a newly identified peptide that acts as a potent satiety agent. It has been reported that peptides involved in the regulation of ingestive behavior are also involved in the regulation of the stress response. However, the relation between nesfatin-1 and stressor-related behaviors like anxiety and/or fear has not yet been investigated.

Objective

The effects of intracerebroventricular (ICV) injection of nesfatin-1 (0, 5, and 25 pmol/3 μl) were assessed in several paradigms that are thought to reflect anxiety and/or fear in rats.

Results

Consistent with an anxiogenic effect, nesfatin-1 dose-dependently decreased the percentage of time spent on the open arms of the elevated plus maze, increased latency to approach, and decreased consumption of a palatable snack in an anxiogenic (unfamiliar) environment. Moreover, ICV nesfatin-1 increased the fear-potentiated startle response and the time spent freezing to both context and conditioned cues in a conditioned emotional response test.

Conclusions

These findings suggest that in addition to its role as a satiety peptide, nesfatin-1 may also be involved in the mediation of anxiety- and/or fear-related responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437

    Article  PubMed  CAS  Google Scholar 

  • Akana SF, Strack AM, Hanson ES, Dallman MF (1994) Regulation of activity in the hypothalamic–pituitary–adrenal axis is integral to a larger hypothalamic system that determines caloric flow. Endocrinology 135:1125–1134

    Article  PubMed  CAS  Google Scholar 

  • Al-Damluji S, Iverson T, Thomas JM, Pendlebury DJ, Rees LH, Besser GM (1987) Food-induced cortisol secretion is mediated by central alpha-1 adrenoceptor modulation of pituitary ACTH secretion. Clin Endocrinol 26:629–636

    Article  CAS  Google Scholar 

  • Anisman H, Merali Z, Hayley S (2008) Neurotransmitter, peptides and cytokine processes in relation to depressive disorder: comorbidity between depression and neurodegenerative disorders. Prog Neurobiol 85:1–74

    Article  PubMed  CAS  Google Scholar 

  • Blanchard RJ, Blanchard DC (1969) Crouching as an index of fear. J Comp Physiol Psychol 67:370–375

    Article  PubMed  CAS  Google Scholar 

  • Brailoiu GC, Dun SL, Brailoiu E, Inan S, Yang J, Chang JK, Dun NJ (2007) Nesfatin-1: distribution and interaction with a G protein-coupled receptor in the rat brain. Endocrinology 148:5088–5094

    Article  PubMed  CAS  Google Scholar 

  • Carobrez AP, Bertoglio LJ (2005) Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 29:1193–1205

    Article  PubMed  CAS  Google Scholar 

  • Chaki S, Ogawa S, Toda Y, Funakoshi T, Okuyama S (2003) Involvement of the melanocortin MC4 receptor in stress-related behavior in rodents. Eur J Pharmacol 474:95–101

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN, Corwin RL (1994) Biological actions of cholecystokinin. Peptides 15:731–755

    Article  PubMed  CAS  Google Scholar 

  • Cruz APM, Frei F, Graeff FG (1994) Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacol Biochem Behav 49:171–176

    Article  PubMed  CAS  Google Scholar 

  • Dallman MF, Akana SF, Strack AM, Hanson S, Sebastian RJ (1995) The neural network that regulates energy balance is responsive to glucocorticoids and insulin and also regulates HPA axis responsivity at sites proximal to CRF neurons. Ann NY Acad Sci 771:730–742

    Article  PubMed  CAS  Google Scholar 

  • Davis M (1990) Animal models of anxiety based on classical conditioning: the conditioned emotional response (CER) and the fear-potentiated startle effect. Pharmacol Ther 47:147–165

    Article  PubMed  CAS  Google Scholar 

  • Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375

    Article  PubMed  CAS  Google Scholar 

  • Davis M (1993) Pharmacological analysis of fear-potentiated startle. Braz J Med Biol Res 26:235–260

    PubMed  CAS  Google Scholar 

  • Davis M, Falls WA, Campeau S, Kim M (1993) Fear-potentiated startle: a neural and pharmacological analysis. Behav Brain Res 58:175–198

    Article  PubMed  CAS  Google Scholar 

  • Dhillo WS, Small CJ, Seal LJ, Kim MS, Stanley SA, Murphy KG, Ghatei MA, Bloom SR (2002) The hypothalamic melanocortin system stimulates the hypothalamo-pituitary-adrenal axis in vitro and in vivo in male rats. Neuroendocrinology 75:209–216

    Article  PubMed  CAS  Google Scholar 

  • File SE (1992) Behavioural detection of anxiolytic action. In: Elliot JM, Heal DJ, Marsden CA (eds) Experimental approaches to anxiety and depression. Wiley, Chichester, pp 25–44

    Google Scholar 

  • Follenius M, Brandenberger G, Hietter B (1982) Diurnal cortisol peaks and their relationships to meals. J Clin Endocrinol Metab 55:757–761

    Article  PubMed  CAS  Google Scholar 

  • Fort P, Butaud C, Salvert D, Shimizu H, Hashimoto K, Mori M, Luppi PH (2007) The satiety molecule nesfatin-1 is co-localized with MCH in hypothalamic neurons expressing Fos during paradoxical sleep in rats. Société des Neuroscience (8e Colloque Montpellier) Abstract:B.13

  • Gosnell BA, Morley JE, Levine AS (1983) A comparison of the effects of corticotropin releasing factor and sauvagine on food intake. Pharmacol Biochem Behav 19:771–775

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Rodgers RJ, Perrault G, Sanger DJ (1997) Risk assessment behaviour: evaluation of utility in the study of 5-HT-related drugs in the rat elevated plus-maze test. Pharmacol Biochem Behav 57:817–827

    Article  PubMed  CAS  Google Scholar 

  • Hanson ES, Dallman MF (1995) Neuropeptide Y (NPY) may integrate responses of hypothalamic feeding systems and the hypothalamic–pituitary–adrenal axis. J Neuroendocrinol 7:273–279

    Article  PubMed  CAS  Google Scholar 

  • Heinrichs SC, Menzaghi F, Pich EM, Britton KT, Koob GF (1995) The role of CRF in behavioral aspects of stress. Ann NY Acad Sci 771:92–104

    Article  PubMed  CAS  Google Scholar 

  • Kalin NH, Takahashi LK (1990) Fear-motivated behavior induced by prior shock experience is mediated by corticotropin-releasing hormone systems. Brain Res 509:80–84

    Article  PubMed  CAS  Google Scholar 

  • Karbonits M, Trainer PJ, Nelson ML, Howse I, Kopelman PG, Besser GM, Grossman AB, Svec F (1996) Differential stimulation of cortisol and dehydroepiandrosterone levels by food in obese and normal subjects: relation to body fat distribution. Clin Endocrinol 45:699–706

    Article  Google Scholar 

  • Kohno D, Nakata M, Maejima Y, Shimizu H, Sedbazar U, Yoshida N, Dezaki K, Onaka T, Mori M, Yada T (2008) Nesfatin-1 neurons in paraventricular and supraoptic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. Endocrinology 149:1295–1301

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Heinrichs SC (1999) A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res 848:141–152

    Article  PubMed  CAS  Google Scholar 

  • Leal AM, Moreira AC (1997) Food and the circadian activity of the hypothalamic–pituitary–adrenal axis. Braz J Med Biol Res 30:1391–1405

    Article  PubMed  CAS  Google Scholar 

  • Levine AS, Morley JE (1981) Stress-induced eating in rats. Am J Physiol 241:R72–R76

    PubMed  CAS  Google Scholar 

  • Liu J, Garza JC, Truong HV, Henschel J, Zhang W, Lu XY (2007) The melanocortinergic pathway is rapidly recruited by emotional stress and contributes to stress-induced anorexia and anxiety-like behavior. Endocrinology 148:5531–5540

    Article  PubMed  CAS  Google Scholar 

  • Lu XY, Barsh GS, Akil H, Watson SJ (2003) Interaction between alpha-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamo-pituitary-adrenal responses. J Neurosci 23:7863–7872

    PubMed  CAS  Google Scholar 

  • Marti O, Marti J, Armario A (1994) Effects of chronic stress on food intake in rats: influence of stressor intensity and duration of daily exposure. Physiol Behav 55:747–753

    Article  PubMed  CAS  Google Scholar 

  • Merali Z, McIntosh J, Kent P, Michaud D, Anisman H (1998) Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala. J Neurosci 18:4758–4766

    PubMed  CAS  Google Scholar 

  • Merali Z, Levac C, Anisman H (2003) Validation of a simple, ethologically relevant paradigm for assessing anxiety in mice. Biol Psychiatry 54:552–565

    Article  PubMed  Google Scholar 

  • Merali Z, Khan S, Michaud DS, Shippy SA, Anisman H (2004) Does amygdaloid corticotropin-releasing hormone (CRH) mediate anxiety-like behaviors? Dissociation of anxiogenic effects and CRH release. Eur J Neurosci 20:229–239

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, Bunney BS (1989) Ionic composition of microdialysis perfusing solution alters the pharmacological responsiveness and basal outflow of striatal dopamine. J Neurochem 53:652–654

    Article  PubMed  CAS  Google Scholar 

  • Morley JE, Levine AS (1982) Corticotropin-releasing factor, grooming and ingestive behavior. Life Sci 31:1459–1464

    Article  PubMed  CAS  Google Scholar 

  • Morley JE, Levine AS, Rowland NE (1983) Minireview. Stress induced eating. Life Sci 32:2169–2182

    Article  PubMed  CAS  Google Scholar 

  • Oh I, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443:709–712

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Pecoraro N, Reyes F, Gomez F, Bhargava A, Dallman MF (2004) Chronic stress promotes palatable feeding, which reduces signs of stress: feedforward and feedback effects of chronic stress. Endocrinology 145:3754–3762

    Article  PubMed  CAS  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  PubMed  CAS  Google Scholar 

  • Piazza PV, Le Moal M (1997) Glucocorticoids as a biological substrate of reward: physiological and pathophysiological implications. Brain Res Rev 25:359–372

    Article  PubMed  CAS  Google Scholar 

  • Price CJ, Hoyda TD, Samson WK, Ferguson AV (2008) Nesfatin-1 influences the excitability of paraventricular nucleus neurons. J Neuroendocrinol 20:245–250

    PubMed  CAS  Google Scholar 

  • Rao TL, Kokare DM, Sarkar S, Khisti RT, Chopde CT, Subhedar N (2003) GABAergic agents prevent alpha-melanocyte stimulating hormone induced anxiety and anorexia in rats. Pharmacol Biochem Behav 76:417–423

    Article  PubMed  CAS  Google Scholar 

  • Richard D, Lin Q, Timofeeva E (2002) The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance. Eur J Pharmacol 440:189–197

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ, Dalvi A (1997) Anxiety, defense and the elevated plus-maze. Neurosci Biobehav Rev 21:801–810

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, Kim MS, Morgan DG, Small CJ, Edwards CM, Sunter D, Abusnana S, Goldstone AP, Russell SH, Stanley SA, Smith DM, Yagaloff K, Ghatei MA, Bloom SR (1998) A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology 139:4428–4431

    Article  PubMed  CAS  Google Scholar 

  • Schulkin J (2006) Angst and the amygdala. Dialogues in Clinical Neuroscience 8:407–416

    PubMed  Google Scholar 

  • Schwartz MW, Dallman MF, Woods SC (1995) Hypothalamic response to starvation: implications for the study of wasting disorders. Am J Physiol 269:R949–R957

    PubMed  CAS  Google Scholar 

  • Shiraishi I, Honma K, Honma S, Hiroshige T (1984) Ethosecretogram: relation of behavior to plasma corticosterone in freely moving rats. Am J Physiol 247:R40–R45

    PubMed  CAS  Google Scholar 

  • Spinazzi R, Andreis PG, Rossi GP, Nussdorfer GG (2006) Orexins in the regulation of the hypothalamic–pituitary–adrenal axis. Pharmacol Rev 58:46–57

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE, Rivier J, Vale WW (1983) Organization of ovine corticotropin-releasing factor (CRF)-immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 36:165–186

    Article  PubMed  CAS  Google Scholar 

  • Tamashiro KL, Hegeman MA, Nguyen MM, Melhorn SJ, Ma LY, Woods SC, Sakai RR (2007) Dynamic body weight and body composition changes in response to subordination stress. Physiol Behav 91:440–448

    Article  PubMed  CAS  Google Scholar 

  • Tannenbaum BM, Brindley DN, Tannenbaum GS, Dallman MF, McArthur MD, Meaney MJ (1997) High-fat feeding alters both basal and stress-induced hypothalamic–pituitary–adrenal activity in the rat. Am J Physiol 273:E1168–E1177

    PubMed  CAS  Google Scholar 

  • Ueta Y, Ozaki Y, Saito J, Onaka T (2003) Involvement of novel feeding-related peptides in neuroendocrine response to stress. Exp Biol Med 228:1168–1174

    CAS  Google Scholar 

  • Valles A, Marti O, Garcia A, Armario A (2000) Single exposure to stressors causes long-lasting, stress-dependent reduction of food intake in rats. Am J Physiol 279:R1138–R1144

    CAS  Google Scholar 

  • Vergoni AV, Bertolini A (2000) Role of melanocortins in the central control of feeding. Eur J Pharmacol 405:25–32

    Article  PubMed  CAS  Google Scholar 

  • Walker DL, Davis M (2002) Quantifying fear potentiated startle using absolute versus proportional increase scoring methods: implications for the neurocircuitry of fear and anxiety. Psychopharmacology 164:318–328

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by funds from the Canadian Institutes of Health Research (CIHR) and the Natural Science and Engineering Research Council of Canada (NSERC). HA is a Canadian Research Chair in Neuroscience. All experiments were conducted in accordance with the current laws of Canada. None of the authors have any direct or indirect conflicts of interests of a financial nature relevant to the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Merali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merali, Z., Cayer, C., Kent, P. et al. Nesfatin-1 increases anxiety- and fear-related behaviors in the rat. Psychopharmacology 201, 115–123 (2008). https://doi.org/10.1007/s00213-008-1252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1252-2

Keywords

Navigation