Skip to main content
Log in

Differential blockade of CRF-evoked behaviors by depletion of norepinephrine and serotonin in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Central administration of corticotropin-releasing factor (CRF) elicits a specific pattern of behavioral responses resembling a stress-like state and is anxiogenic in rodent models of anxiety.

Objectives

Specific behaviors evoked by the administration of CRF were measured. The roles of CRF receptor subtypes and that of serotonergic and noradrenergic systems in mediating these responses were studied.

Materials and methods

Burying, grooming, and head shakes were quantified in rats following intracerebroventricular administration of CRF and urocortin II and after pretreatment with antagonists. The role of forebrain norepinephrine in the behavioral responses to CRF (0.3 μg) was examined following pretreatment with the neurotoxin DSP-4 and that of serotonin after depletion using systemic administration of para-chlorophenylalanine (p-CPA).

Results

CRF at 0.3 and 3.0 μg caused robust increases in burying, grooming, and head shakes, but urocortin II was ineffective. Pretreatment with either antalarmin or propranolol significantly attenuated the CRF-evoked behaviors. Destruction of forebrain norepinephrine pathways blocked spontaneous burying behavior elicited by CRF and conditioned burying directed towards an electrified shock probe. In contrast, depletion of 5-HT selectively attenuated CRF-evoked grooming.

Conclusions

Overt behavioral responses produced by CRF, burying, grooming, and head shakes appeared to be mediated through the CRF1 receptor. Spontaneous burying behavior evoked by CRF or conditioned burying directed towards a shock probe was disrupted by lesion of the dorsal noradrenergic bundle and may represent anxiety-like behavior caused by CRF activation of the locus ceruleus. In contrast, CRF-evoked increases in grooming were dependent on serotonin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abercrombie ED, Jacobs BL (1988) Systemic naloxone administration potentiates locus coeruleus noradrenergic neuronal activity under stressful but not non-stressful conditions. Brain Res 441:362–366

    Article  PubMed  CAS  Google Scholar 

  • Abercrombie ED, Keller RW Jr, Zigmond MJ (1988) Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: pharmacological and behavioral studies. Neuroscience 27:897–904

    Article  PubMed  CAS  Google Scholar 

  • Abrams JK, Johnson PL, Hay-Schmidt A, Mikkelsen JD, Shekhar A, Lowry CA (2005) Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Neuroscience 133:983–997

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian GK, VanderMaelen CP (1982) Alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science 215:1394–1396

    Article  PubMed  CAS  Google Scholar 

  • Arborelius L, Skelton KH, Thrivikraman KV, Plotsky PM, Schulz DW, Owens MJ (2000) Chronic administration of the selective corticotropin-releasing factor 1 receptor antagonist CP-154,526: behavioral, endocrine and neurochemical effects in the rat. J Pharmacol Exp Ther 294:588–597

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Rajkowski J, Kubiak P, Valentino RJ, Shipley MT (1996) Role of the locus coeruleus in emotional activation. Prog Brain Res 107:379–402

    Article  PubMed  CAS  Google Scholar 

  • Basso AM, Spina M, Rivier J, Vale W, Koob GF (1999) Corticotropin-releasing factor antagonist attenuates the “anxiogenic-like” effect in the defensive burying paradigm but not in the elevated plus-maze following chronic cocaine in rats. Psychopharmacology (Berl) 145:21–30

    Article  CAS  Google Scholar 

  • Bondi CO, Barrera G, Lapiz MD, Bedard T, Mahan A, Morilak DA (2007) Noradrenergic facilitation of shock-probe defensive burying in lateral septum of rats, and modulation by chronic treatment with desipramine. Prog Neuropsychopharmacol Biol Psychiatry 31:482–495

    Article  PubMed  CAS  Google Scholar 

  • Bressers WM, Kruk MR, Van Erp AM, Willekens-Bramer DC, Haccou P, Meelis E (1995) Time structure of self-grooming in the rat: self-facilitation and effects of hypothalamic stimulation and neuropeptides. Behav Neurosci 109:955–964

    Article  PubMed  CAS  Google Scholar 

  • Britton DR, Varela M, Garcia A, Rosenthal M (1986) Dexamethasone suppresses pituitary–adrenal but not behavioral effects of centrally administered CRF. Life Sci 38:211–216

    Article  PubMed  CAS  Google Scholar 

  • Brown MR, Fisher LA (1985) Corticotropin-releasing factor: effects on the autonomic nervous system and visceral systems. Fed Proc 44:243–248

    PubMed  CAS  Google Scholar 

  • Butler PD, Weiss JM, Stout JC, Nemeroff CB (1990) Corticotropin-releasing factor produces fear-enhancing and behavioral activating effects following infusion into the locus coeruleus. J Neurosci 10:176–183

    PubMed  CAS  Google Scholar 

  • Calhoun J (1962) The ecology and sociology of the Norway rat. US Dept. Health, Education and Welfare, Bethesda, MD, pp 1–287

    Google Scholar 

  • Campbell BM, Morrison JL, Walker EL, Merchant KM (2004) Differential regulation of behavioral, genomic, and neuroendocrine responses by CRF infusions in rats. Pharmacol Biochem Behav 77:447–455

    Article  PubMed  CAS  Google Scholar 

  • Carrasco GA, Van de Kar LD (2003) Neuroendocrine pharmacology of stress. Eur J Pharmacol 463:235–272

    Article  PubMed  CAS  Google Scholar 

  • Charney DS, Heninger GR, Redmond DE Jr (1983) Yohimbine induced anxiety and increased noradrenergic function in humans: effects of diazepam and clonidine. Life Sci 33:19–29

    Article  PubMed  CAS  Google Scholar 

  • Choleris E, Thomas AW, Kavaliers M, Prato FS (2001) A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobehav Rev 25:235–260

    Article  PubMed  CAS  Google Scholar 

  • Cole BJ, Koob GF (1988) Propranolol antagonizes the enhanced conditioned fear produced by corticotropin releasing factor. J Pharmacol Exp Ther 247:902–910

    PubMed  CAS  Google Scholar 

  • Curtis AL, Lechner SM, Pavcovich LA, Valentino RJ (1997) Activation of the locus coeruleus noradrenergic system by intracoerulear microinfusion of corticotropin-releasing factor: effects on discharge rate, cortical norepinephrine levels and cortical electroencephalographic activity. J Pharmacol Exp Ther 281:163–172

    PubMed  CAS  Google Scholar 

  • Dautzenberg FM, Py-Lang G, Higelin J, Fischer C, Wright MB, Huber G (2001) Different binding modes of amphibian and human corticotropin-releasing factor type 1 and type 2 receptors: evidence for evolutionary differences. J Pharmacol Exp Ther 296:113–120

    PubMed  CAS  Google Scholar 

  • De Boer SF, Koolhaas JM (2003) Defensive burying in rodents: ethology, neurobiology and psychopharmacology. Eur J Pharmacol 463:145–161

    Article  PubMed  CAS  Google Scholar 

  • De Boer SF, Slangen JL, Van der Gugten J (1990) Plasma catecholamine and corticosterone levels during active and passive shock-prod avoidance behavior in rats: effects of chlordiazepoxide. Physiol Behav 47:1089–1098

    Article  PubMed  Google Scholar 

  • de Groote L, Penalva RG, Flachskamm C, Reul JM, Linthorst AC (2005) Differential monoaminergic, neuroendocrine and behavioural responses after central administration of corticotropin-releasing factor receptor type 1 and type 2 agonists. J Neurochem 94:45–56

    Article  PubMed  CAS  Google Scholar 

  • Diamant M, Croiset G, de Wied D (1992) The effect of corticotropin-releasing factor (CRF) on autonomic and behavioral responses during shock-prod burying test in rats. Peptides 13:1149–1158

    Article  PubMed  CAS  Google Scholar 

  • Drago F, Contarino A, Busa L (1999) The expression of neuropeptide-induced excessive grooming behavior in dopamine D1 and D2 receptor-deficient mice. Eur J Pharmacol 365:125–131

    Article  PubMed  CAS  Google Scholar 

  • Drust EG, Connor JD (1983) Pharmacological analysis of shaking behavior induced by enkephalins, thyrotropin-releasing hormone or serotonin in rats: evidence for different mechanisms. J Pharmacol Exp Ther 224:148–154

    PubMed  CAS  Google Scholar 

  • Dunn AJ, Berridge CW (1990) Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Brain Res Rev 15:71–100

    Article  PubMed  CAS  Google Scholar 

  • Dunn AJ, File SE (1987) Corticotropin-releasing factor has an anxiogenic action in the social interaction test. Horm Behav 21:193–202

    Article  PubMed  CAS  Google Scholar 

  • Dunn AJ, Berridge CW, Lai YI, Yachabach TL (1987) CRF-induced excessive grooming behavior in rats and mice. Peptides 8:841–844

    Article  PubMed  CAS  Google Scholar 

  • Eaves M, Thatcher-Britton K, Rivier J, Vale W, Koob GF (1985) Effects of corticotropin releasing factor on locomotor activity in hypophysectomized rats. Peptides 6:923–926

    Article  PubMed  CAS  Google Scholar 

  • Gargiulo PA, Donoso AO (1996) Distinct grooming patterns induced by intracerebroventricular injection of CRH, TRH and LHRH in male rats. Braz J Med Biol Res 29:375–379

    PubMed  CAS  Google Scholar 

  • Gehlert DR, Shekhar A, Morin SM, Hipskind PA, Zink C, Gackenheimer SL, Shaw J, Fitz SD, Sajdyk TJ (2005) Stress and central Urocortin increase anxiety-like behavior in the social interaction test via the CRF1 receptor. Eur J Pharmacol 509:145–153

    Article  PubMed  CAS  Google Scholar 

  • Gorman AL, Dunn AJ (1993) Beta-adrenergic receptors are involved in stress-related behavioral changes. Pharmacol Biochem Behav 45:1–7

    Article  PubMed  CAS  Google Scholar 

  • Graeff FG (1997) Serotonergic systems. Psychiatr Clin North Am 20:723–739

    Article  PubMed  CAS  Google Scholar 

  • Graeff FG, Netto CF, Zangrossi H Jr (1998) The elevated T-maze as an experimental model of anxiety. Neurosci Biobehav Rev 23:237–246

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P, Geslin M, Scatton B, Maffrand JP, Soubrie P (2002) 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist. II. Characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 301:333–345

    Article  PubMed  CAS  Google Scholar 

  • Handley SL, Singh L (1986) Neurotranmsitters and shaking behaviour—more than a ‘gut bath’ for the brain? Trends Pharmacol Sci 7:324–328

    Article  CAS  Google Scholar 

  • Heinrichs SC, Pich EM, Miczek KA, Britton KT, Koob GF (1992) Corticotropin-releasing factor antagonist reduces emotionality in socially defeated rats via direct neurotropic action. Brain Res 581:190–197

    Article  PubMed  CAS  Google Scholar 

  • Isogawa K, Akiyoshi J, Hikichi T, Yamamoto Y, Tsutsumi T, Nagayama H (2000) Effect of corticotropin releasing factor receptor 1 antagonist on extracellular norepinephrine, dopamine and serotonin in hippocampus and prefrontal cortex of rats in vivo. Neuropeptides 34:234–239

    Article  PubMed  CAS  Google Scholar 

  • Jonsson G, Hallman H, Ponzio F, Ross S (1981) DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine)--a useful denervation tool for central and peripheral noradrenaline neurons. Eur J Pharmacol 72:173–188

    Article  PubMed  CAS  Google Scholar 

  • Kagamiishi Y, Yamamoto T, Watanabe S (2003) Hippocampal serotonergic system is involved in anxiety-like behavior induced by corticotropin-releasing factor. Brain Res 991:212–221

    Article  PubMed  CAS  Google Scholar 

  • Kalueff AV, Tuohimaa P (2005) The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. J Neurosci Methods 143:169–177

    Article  PubMed  Google Scholar 

  • Kirby LG, Rice KC, Valentino RJ (2000) Effects of corticotropin-releasing factor on neuronal activity in the serotonergic dorsal raphe nucleus. Neuropsychopharmacology 22:148–162

    Article  PubMed  CAS  Google Scholar 

  • Koe BK, Weissman A (1966) p-Chlorophenylalanine: a specific depletor of brain serotonin. J Pharmacol Exp Ther 154:499–516

    PubMed  CAS  Google Scholar 

  • Koob GF (1999) Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry 46:1167–1180

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Heinrichs SC (1999) A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res 848:141–152

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Swerdlow N, Seeligson M, Eaves M, Sutton R, Rivier J, Vale W (1984) Effects of alpha-flupenthixol and naloxone on CRF-induced locomotor activation. Neuroendocrinology 39:459–464

    Article  PubMed  CAS  Google Scholar 

  • Korte SM, Bouws GA, Koolhaas JM, Bohus B (1992) Neuroendocrine and behavioral responses during conditioned active and passive behavior in the defensive burying/probe avoidance paradigm: effects of ipsapirone. Physiol Behav 52:355–361

    Article  PubMed  CAS  Google Scholar 

  • Korte SM, Bouws GA, Bohus B (1993) Central actions of corticotropin-releasing hormone (CRH) on behavioral, neuroendocrine, and cardiovascular regulation: brain corticoid receptor involvement. Horm Behav 27:167–183

    Article  PubMed  CAS  Google Scholar 

  • Korte SM, Korte-Bouws GA, Bohus B, Koob GF (1994) Effect of corticotropin-releasing factor antagonist on behavioral and neuroendocrine responses during exposure to defensive burying paradigm in rats. Physiol Behav 56:115–120

    Article  PubMed  CAS  Google Scholar 

  • Lazosky AJ, Britton DR (1991) Effects of 5-HT-1A receptor agonists on CRF-induced behavior. Psychopharmacology (Berl) 104:132–136

    Article  CAS  Google Scholar 

  • Liang KC, Melia KR, Miserendino MJ, Falls WA, Campeau S, Davis M (1992) Corticotropin-releasing factor: long-lasting facilitation of the acoustic startle reflex. J Neurosci 12:2303–2312

    PubMed  CAS  Google Scholar 

  • Liebsch G, Montkowski A, Holsboer F, Landgraf R (1998) Behavioural profiles of two Wistar rat lines selectively bred for high or low anxiety-related behaviour. Behav Brain Res 94:301–310

    Article  PubMed  CAS  Google Scholar 

  • Litvin Y, Pentkowski NS, Blanchard DC, Blanchard RJ (2007) CRF type 1 receptors in the dorsal periaqueductal gray modulate anxiety-induced defensive behaviors. Horm Behav 52:244–251

    Article  PubMed  CAS  Google Scholar 

  • Lumley LA, Robison CL, Chen WK, Mark B, Meyerhoff JL (2001) Vasopressin into the preoptic area increases grooming behavior in mice. Physiol Behav 73:451–455

    Article  PubMed  CAS  Google Scholar 

  • MacClintock D (1970) Squirrels of North America. Van Nostrand Reinhold, New York, pp 28–51

    Google Scholar 

  • Matsuzaki I, Takamatsu Y, Moroji T (1989) The effects of intracerebroventricularly injected corticotropin-releasing factor (CRF) on the central nervous system: behavioural and biochemical studies. Neuropeptides 13:147–155

    Article  PubMed  CAS  Google Scholar 

  • Mayorga AJ, Dalvi A, Page ME, Zimov-Levinson S, Hen R, Lucki I (2001) Antidepressant-like behavioral effects in 5-hydroxytryptamine1A and 5-hydroxytryptamine1B receptor mutant mice. J Pharmacol Exp Ther 298:1101–1107

    PubMed  CAS  Google Scholar 

  • Melia KR, Duman RS (1991) Involvement of corticotropin-releasing factor in chronic stress regulation of the brain noradrenergic system. Proc Natl Acad Sci U S A 88:8382–8386

    Article  PubMed  CAS  Google Scholar 

  • Menzaghi F, Howard RL, Heinrichs SC, Vale W, Rivier J, Koob GF (1994) Characterization of a novel and potent corticotropin-releasing factor antagonist in rats. J Pharmacol Exp Ther 269:564–572

    PubMed  CAS  Google Scholar 

  • Morilak DA, Barrera G, Echevarria DJ, Garcia AS, Hernandez A, Ma S, Petre CO (2005) Role of brain norepinephrine in the behavioral response to stress. Prog Neuropsychopharmacol Biol Psychiatry 29:1214–1224

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff CB (2004) Early-life adversity, CRF dysregulation, and vulnerability to mood and anxiety disorders. Psychopharmacol Bull 38(Suppl 1):14–20

    PubMed  Google Scholar 

  • Ohata H, Shibasaki T (2004) Effects of urocortin 2 and 3 on motor activity and food intake in rats. Peptides 25:1703–1709

    Article  PubMed  CAS  Google Scholar 

  • Owens MJ, Nemeroff CB (1993) The role of corticotropin-releasing factor in the pathophysiology of affective and anxiety disorders: laboratory and clinical studies. Ciba Found Symp 172:296–308, discussion 308–316

    PubMed  CAS  Google Scholar 

  • Owings DH, Coss RG (1977) Snake mobbing by California ground squirrels: adaptive variation and ontogeny. Behaviour 62:50–69

    Article  Google Scholar 

  • Price ML, Lucki I (2001) Regulation of serotonin release in the lateral septum and striatum by corticotropin-releasing factor. J Neurosci 21:2833–2841

    PubMed  CAS  Google Scholar 

  • Price ML, Curtis AL, Kirby LG, Valentino RJ, Lucki I (1998) Effects of corticotropin-releasing factor on brain serotonergic activity. Neuropsychopharmacology 18:492–502

    Article  PubMed  CAS  Google Scholar 

  • Reyes BA, Fox K, Valentino RJ, Van Bockstaele EJ (2006) Agonist-induced internalization of corticotropin-releasing factor receptors in noradrenergic neurons of the rat locus coeruleus. Eur J Neurosci 23:2991–2998

    Article  PubMed  Google Scholar 

  • Reynolds SM, Berridge CW (2001) Fear and feeding in the nucleus accumbens shell: rostrocaudal segregation of GABA-elicited defensive behavior versus eating behavior. J Neurosci 21:3261–3270

    PubMed  CAS  Google Scholar 

  • Risbrough VB, Stein MB (2006) Role of corticotropin releasing factor in anxiety disorders: a translational research perspective. Horm Behav 50:550–561

    Article  PubMed  CAS  Google Scholar 

  • Sherman JE, Kalin NH (1987) The effects of ICV-CRH on novelty-induced behavior. Pharmacol Biochem Behav 26:699–703

    Article  PubMed  CAS  Google Scholar 

  • Singh L, Heaton JC, Rea PJ, Handley SL (1986) Involvement of noradrenaline in potentiation of the head-twitch response by GABA-related drugs. Psychopharmacology (Berl) 88:315–319

    Article  CAS  Google Scholar 

  • Spina M, Merlo-Pich E, Chan RK, Basso AM, Rivier J, Vale W, Koob GF (1996) Appetite-suppressing effects of urocortin, a CRF-related neuropeptide. Science 273:1561–1564

    Article  PubMed  CAS  Google Scholar 

  • Spina MG, Basso AM, Zorrilla EP, Heyser CJ, Rivier J, Vale W, Merlo-Pich E, Koob GF (2000) Behavioral effects of central administration of the novel CRF antagonist astressin in rats. Neuropsychopharmacology 22:230–239

    Article  PubMed  CAS  Google Scholar 

  • Spruijt BM, van Hooff JA, Gispen WH (1992) Ethology and neurobiology of grooming behavior. Physiol Rev 72:825–852

    PubMed  CAS  Google Scholar 

  • Takahashi LK (2001) Role of CRF(1) and CRF(2) receptors in fear and anxiety. Neurosci Biobehav Rev 25:627–636

    Article  PubMed  CAS  Google Scholar 

  • To CT, Anheuer ZE, Bagdy G (1999) Effects of acute and chronic fluoxetine treatment of CRH-induced anxiety. Neuroreport 10:553–555

    Article  PubMed  CAS  Google Scholar 

  • Treit D, Pesold C (1990) Septal lesions inhibit fear reactions in two animal models of anxiolytic drug action. Physiol Behav 47:365–371

    Article  PubMed  CAS  Google Scholar 

  • Treit D, Pinel JP, Fibiger HC (1981) Conditioned defensive burying: a new paradigm for the study of anxiolytic agents. Pharmacol Biochem Behav 15:619–626

    Article  PubMed  CAS  Google Scholar 

  • Tricklebank MD (1985) The behavioural response to 5-HT receptor agonists and subtypes of the central 5-HT receptor. Trends Pharmacol Sci 6:403–407

    Article  CAS  Google Scholar 

  • Turski L, Turski W, Czuczwar SJ, Kleinrok Z (1981) Evidence against the involvement of serotonergic mechanisms in wet dog shake behavior induced by carbachol chloride in rats. Psychopharmacology (Berl) 73:376–380

    Article  CAS  Google Scholar 

  • Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213:1394–1397

    Article  PubMed  CAS  Google Scholar 

  • Valentino RJ, Foote SL (1987) Corticotropin-releasing factor disrupts sensory responses of brain noradrenergic neurons. Neuroendocrinology 45:28–36

    Article  PubMed  CAS  Google Scholar 

  • Valentino RJ, Foote SL, Aston-Jones G (1983) Corticotropin-releasing factor activates noradrenergic neurons of the locus coeruleus. Brain Res 270:363–367

    Article  PubMed  CAS  Google Scholar 

  • Valentino RJ, Foote SL, Page ME (1993) The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann N Y Acad Sci 697:173–188

    Article  PubMed  CAS  Google Scholar 

  • Van Bockstaele EJ, Colago EE, Valentino RJ (1996) Corticotropin-releasing factor-containing axon terminals synapse onto catecholamine dendrites and may presynaptically modulate other afferents in the rostral pole of the nucleus locus coeruleus in the rat brain. J Comp Neurol 364:523–534

    Article  PubMed  Google Scholar 

  • Vetulani J, Bednarczyk B, Reichenberg K, Rokosz A (1980) Head twitches induced by LSD and quipazine: similarities and differences. Neuropharmacology 19:155–158

    Article  PubMed  CAS  Google Scholar 

  • Weiss JM, Stout JC, Aaron MF, Quan N, Owens MJ, Butler PD, Nemeroff CB (1994) Depression and anxiety: role of the locus coeruleus and corticotropin-releasing factor. Brain Res Bull 35:561–572

    Article  PubMed  CAS  Google Scholar 

  • Wiersma A, Baauw AD, Bohus B, Koolhaas JM (1995) Behavioural activation produced by CRH but not alpha-helical CRH (CRH-receptor antagonist) when microinfused into the central nucleus of the amygdala under stress-free conditions. Psychoneuroendocrinology 20:423–432

    Article  PubMed  CAS  Google Scholar 

  • Yang XM, Dunn AJ (1990) Central beta 1-adrenergic receptors are involved in CRF-induced defensive withdrawal. Pharmacol Biochem Behav 36:847–851

    Article  PubMed  CAS  Google Scholar 

  • Zobel AW, Nickel T, Kunzel HE, Ackl N, Sonntag A, Ising M, Holsboer F (2000) Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res 34:171–181

    Article  PubMed  CAS  Google Scholar 

  • Zorrilla EP, Valdez GR, Nozulak J, Koob GF, Markou A (2002) Effects of antalarmin, a CRF type 1 receptor antagonist, on anxiety-like behavior and motor activation in the rat. Brain Res 952:188–199

    Article  PubMed  CAS  Google Scholar 

  • Zorilla EP, Reinhardt LE, Valdez GR, Inoue K, Rivier JE, Vale WW, Koob GF (2004) Human urocortin 2, a corticotropin-releasing factor (CRF)2 agonist, and ovine CRF, a CRF1 agonist, differentially alter feeding and motor activity. J Pharmacol Exp Ther 310:1027–1034

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by USPHS grants MH40008 and MH58250. The authors thank Dr. Candace Hoffmann and Dr. Brian Hoshaw for their development of the conditioned burying test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irwin Lucki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, O., Carr, G.V., Hill, T.E. et al. Differential blockade of CRF-evoked behaviors by depletion of norepinephrine and serotonin in rats. Psychopharmacology 199, 569–582 (2008). https://doi.org/10.1007/s00213-008-1179-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1179-7

Keywords

Navigation