Skip to main content

Advertisement

Log in

Alprazolam potentiates the antiaversive effect induced by the activation of 5-HT1A and 5-HT2A receptors in the rat dorsal periaqueductal gray

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Serotonin in the dorsal periaqueductal gray (DPAG) through the activation of 5-HT1A and 5-HT2A receptors inhibits escape, a defensive behavior associated with panic attacks. Long-term treatment with antipanic drugs that nonselectively or selectively blocks the reuptake of serotonin (e.g., imipramine and fluoxetine, respectively) enhances the inhibitory effect on escape caused by intra-DPAG injection of 5-HT1A and 5-HT2A receptor agonists. It has been proposed that these compounds exert their effect on panic by facilitating 5-HT-mediated neurotransmission in the DPAG.

Objectives

The objective of this study was to investigate whether facilitation of 5-HT neurotransmission in the DPAG is also observed after treatment with alprazolam, a pharmacologically distinct antipanic drug that acts primarily as a high potency benzodiazepine receptor agonist.

Materials and methods

Male Wistar rats, subchronically (3–6 days) or chronically (14–17 days) treated with alprazolam (2 and 4 mg/kg, i.p.) were intra-DPAG injected with (±)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), (±)-1-(2,5-dimethoxy-4-iodophenyl) piperazine dihydrochloride (DOI), and midazolam, respectively, 5-HT1A, 5-HT2A/2C, and benzodiazepine receptor agonists. The intensity of electrical current that needed to be applied to the DPAG to evoke escape behavior was measured before and after the microinjection of these agonists.

Results

Intra-DPAG injection of the 5-HT agonists and midazolam increased the escape threshold in all groups of animals tested, indicating a panicolytic-like effect. The inhibitory effect of 8-OH-DPAT and DOI, but not midazolam, was significantly higher in animals receiving long-, but not short-term treatment with alprazolam.

Conclusions

Alprazolam as antidepressants compounds facilitates 5-HT1A- and 5-HT2A-receptor-mediated neurotransmission in the DPAG, implicating this effect in the mode of action of different classes of antipanic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amano K, Tanikawa T, Iseki H, Kawabatake H, Notani M, Kawamura H, Kitamura K (1978) Single neuron analysis of the human midbrain tegmentum. Rostral mecencephalicreticulotomy for pain relief. Appl Neurophysiol 41:66–78

    Article  PubMed  CAS  Google Scholar 

  • American Psychiatry Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn revised. APA Press, Washington, DC

    Google Scholar 

  • Andersch S, Rosenberg NK, Kullingsjo H, Ottosson JO, Bech P, Bruun-Hansen J, Hanson L, Lorentzen K, Mellergard M, Rasmussen S et al (1991) Efficacy and safety of alprazolam, imipramine and placebo in treating panic disorder. A Scandinavian multicenter study. Acta Psychiatr Scand Suppl 365:18–27

    Article  PubMed  CAS  Google Scholar 

  • Audi EA, Graeff FG (1984) Benzodiazepine receptors in the periaqueductal grey mediate anti-aversive drug action. Eur J Pharmacol 103(3–4):279–285

    Article  PubMed  CAS  Google Scholar 

  • Bakker A, van Balkom AJ, Stein DJ (2005) Evidence-based pharmacotherapy of panic disorder. Int J Neuropsychopharmacol 8(3):473–482

    Article  PubMed  CAS  Google Scholar 

  • Baldwin DS, Anderson IM, Nutt DJ, Bandelow B, Bond A, Davidson JR, den Boer JA, Fineberg NA, Knapp M, Scott J, Wittchen HU (2005) Evidence-based guidelines for the pharmacological treatment of anxiety disorders: recommendations from the British Association for Psychopharmacology. J Psychopharmacol 19(6):567–596

    Article  PubMed  CAS  Google Scholar 

  • Ballenger JC, Burrows GD, DuPont RL Jr, Lesser IM, Noyes R Jr, Pecknold JC, Rifkin A, Swinson RP (1988) Alprazolam in panic disorder and agoraphobia: results from a multicenter trial. I. Efficacy in short-term treatment. Arch Gen Psychiatry 45(5):413–422

    PubMed  CAS  Google Scholar 

  • Bandler R, Carrive P, Depaulis A (1991) Introduction: emerging principles of organization of the midbrain periaqueductal gray matter. In: Depaulis A, Bandler R (eds) The midbrain periaqueductal gay matter: functional, anatomical and neurochemical organization. Plenun, New York, pp 1–8

    Google Scholar 

  • Benarroch EE (1993) The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc 68(10):988–1001

    PubMed  CAS  Google Scholar 

  • Bengtsson HJ, Kele J, Johansson J, Hjorth S (2000) Interaction of the antidepressant mirtazapine with alpha2-adrenoceptors modulating the release of 5-HT in different rat brain regions in vivo. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):406–412

    Article  PubMed  CAS  Google Scholar 

  • Broderick PA (1997) Alprazolam, diazepam, yohimbine, clonidine: in vivo CA1 hippocampal norepinephrine and serotonin release profiles under chloral hydrate anesthesia. Prog Neuropsychopharmacol Biol Psychiatry 21(7):1117–1140

    Article  PubMed  CAS  Google Scholar 

  • Casacalenda N, Boulenger JP (1998) Pharmacologic treatments effective in both generalized anxiety disorder and major depressive disorder: clinical and theoretical implications. Can J Psychiatry 43(7):722–730

    PubMed  CAS  Google Scholar 

  • Connor KM, Davidson JRT (1998) Generalized anxiety disorder: neurobiological and pharmacotherapeutic perspectives. Biol Psychiatry 44:1286–1294

    Article  PubMed  CAS  Google Scholar 

  • de Bortoli VC, Nogueira RL, Zangrossi H Jr (2006) Effects of fluoxetine and buspirone on the panicolytic-like response induced by the activation of 5-HT1A and 5-HT2A receptors in the rat dorsal periaqueductal gray. Psychopharmacology (Berl) 183(4):422–428

    Article  CAS  Google Scholar 

  • den Boer JA, Slaap BR (1998) Review of current treatment in panic disorder. Int Clin Psychopharmacol 13(suppl 4):S25–S30

    Article  PubMed  Google Scholar 

  • de Paula Soares V, Zangrossi H Jr (2004) Involvement of 5-HT1A and 5-HT2 receptors of the dorsal periaqueductal gray in the regulation of the defensive behaviors generated by the elevated T-maze. Brain Res Bull 64(2):181–188

    Article  PubMed  CAS  Google Scholar 

  • Eriksson E, Carlsson M, Nilsson C, Soderpalm B (1986) Does alprazolam, in contrast to diazepam, activate alpha 2-adrenoceptors involved in the regulation of rat growth hormone secretion? Life Sci 38(16):1491–1498

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JA, Kravitz HM (1982) Alprazolam: pharmacokinetics, clinical efficacy, and mechanism of action. Pharmacotherapy 2(5):243–254

    PubMed  CAS  Google Scholar 

  • Glennon RA, Metwally K, Dukat M, Ismaiel AM, De los Angeles J, Herndon J, Teitler M, Khorana N (2002) Ketanserin and spiperone as templates for novel serotonin 5-HT(2A) antagonists. Curr Top Med Chem 2(6):539–558

    Article  PubMed  CAS  Google Scholar 

  • Gorman JM, Liebowitz MR, Fyer AJ, Stein J (1989) A neuroanatomical hypothesis for panic disorder. Am J Psychiatry 146(2):148–161

    PubMed  CAS  Google Scholar 

  • Graeff FG (1990) Brain defense systems and anxiety. In: Roth M, Burrows GD, Noyes R (eds) Handbook of anxiety. The neurobiology of anxiety. Elsevier, Amsterdam, pp 307–354

    Google Scholar 

  • Graeff FG (2004) Serotonin, the periaqueductal gray and panic. Neurosci Biobehav Rev 28(3):239–259

    Article  PubMed  CAS  Google Scholar 

  • Graeff FG, Zangrossi H Jr (2002) Animal models of anxiety disorders. In: D’Haenen H, den Boer JA, Westenberg H, Willner P (eds) Textbook of biological psychiatry. Wiley, London, pp 879–893

    Google Scholar 

  • Graeff FG, Silveira MC, Nogueira RL, Audi EA, Oliveira RM (1993) Role of the amygdala and periaqueductal gray in anxiety and panic. Behav Brain Res 58:123–131

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Blanchard DC, Jung A, Lee JC, Masuda CK, Blanchard RJ (1995) Further evidence that the mouse defense test battery is useful for screening anxiolytic and panicolytic drugs: effects of acute and chronic treatment with alprazolam. Neuropharmacology 34(12):1625–1633

    Article  PubMed  CAS  Google Scholar 

  • Hensler JG (2003) Regulation of 5-HT1A receptor function in brain following agonist or antidepressant administration. Life Sci 72(15):1665–1682

    Article  PubMed  CAS  Google Scholar 

  • Hjorth S, Bengtsson HJ, Kullberg A, Carlzon D, Peilot H, Auerbach SB (2000) Serotonin autoreceptor function and antidepressant drug action. J Psychopharmacol 14(2):177–185

    PubMed  CAS  Google Scholar 

  • Jacob CA, Cabral AH, Almeida LP, Magierek V, Ramos PL, Zanoveli JM, Landeira-Fernandez J, Zangrossi Jr H, Nogueira RL (2002) Chronic imipramine enhances 5-HT(1A) and 5-HT(2) receptors-mediated inhibition of panic-like behavior in the rat dorsal periaqueductal gray. Pharmacol Biochem Behav 72:761–766

    Article  PubMed  CAS  Google Scholar 

  • Jenck F, Moreau JL, Martin JR (1995) Dorsal periaqueductal gray-induced aversion as a simulation of panic anxiety: elements of face and predictive validity. Psychiatry Res 57:181–191

    Article  PubMed  CAS  Google Scholar 

  • Jenck F, Moreau JL, Berendsen HH, Boes M, Broekkamp CL, Martin JR, Wichmann J, Van Delft AM (1998) Antiaversive effects of 5HT2C receptor agonists and fluoxetine in a model of panic-like anxiety in rats. Eur Neuropsychopharmacol 8:161–168

    Article  PubMed  CAS  Google Scholar 

  • Joordens RJ, Hijzen TH, Olivier B (1998) The anxiolytic effect on the fear-potentiated startle is not due to a non-specific disruption. Life Sci 63(25):2227–2232

    Article  PubMed  CAS  Google Scholar 

  • Kasper S, Resinger E (2001) Panic disorder: the place of benzodiazepines and selective serotonin reuptake inhibitors. Eur Neuropsychopharmacol 11(4):307–321

    Article  PubMed  CAS  Google Scholar 

  • Kessler RC, Chiu WT, Jin R, Ruscio AM, Shear K, Walters EE (2006) The epidemiology of panic attacks, panic disorder, and agoraphobia in the National Comorbidity Survey Replication. Arch Gen Psychiatry 63:415–424

    Article  PubMed  Google Scholar 

  • King CM, Gommans J, Joordens RJ, Hijzen TH, Maes RA, Olivier B (1997) Effects of 5-HT1A receptor ligands in a modified Geller-Seifter conflict model in the rat. Eur J Pharmacol 325(2–3):121–128

    Article  PubMed  CAS  Google Scholar 

  • Klein DF, Fink M (1962) Psychiatric reaction patterns to imipramine. Am J Psychiatry 119:432–438

    PubMed  CAS  Google Scholar 

  • Klein E, Zinder O, Colin V, Zilberman I, Levy N, Greenberg A, Lenox RH (1995) Clinical similarity and biological diversity in the response to alprazolam in patients with panic disorder and generalized anxiety disorder. Acta Psychiatr Scand 92(6):399–408

    Article  PubMed  CAS  Google Scholar 

  • Knight AR, Misra A, Quirk K, Benwell K, Revell D, Kennett G, Bickerdike M (2004) Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors. Naunyn Schmiedebergs Arch Pharmacol 370(2):114–123

    Article  PubMed  CAS  Google Scholar 

  • Kravitz HM, Fawcett J, Newman AJ (1993) Alprazolam and depression: a review of risks and benefits. J Clin Psychiatry 54(Suppl):78–84

    PubMed  Google Scholar 

  • Lader M (2005) Management of panic disorder. Expert Rev Neurother 5(2):259–266

    Article  PubMed  CAS  Google Scholar 

  • Lovick TA (2000) Panic disorder - a malfunction of multiple transmitter control systems within the midbrain periaqueductal gray matter. Neuroscientist 6:48–59

    Article  Google Scholar 

  • Marseillan RF (1977) A solid state sine-wave stimulator. Physiol Behav 19:339–340

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ (2003) The neurobiology and control of anxious states. Prog Neurobiol 70(2):83–244

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Lejeune F, Gobert A (2000) Reciprocal autoreceptor and heteroreceptor control of serotonergic, dopaminergic and noradrenergic transmission in the frontal cortex: relevance to the actions of antidepressant agents. J Psychopharmacol 14(2):114–138

    Article  PubMed  CAS  Google Scholar 

  • Mongeau R, Marsden CA (1997) Effect of imipramine treatments on the 5-HT1A-receptor-mediated inhibition of panic-like behaviours in rats. Psychopharmacology 131:321–328

    Article  PubMed  CAS  Google Scholar 

  • Mongeau R, de Montigny C, Blier P (1994) Electrophysiologic evidence for desensitization of alpha 2-adrenoceptors on serotonin terminals following long-term treatment with drugs increasing norepinephrine synaptic concentration. Neuropsychopharmacology 10:41–51

    PubMed  CAS  Google Scholar 

  • Mongeau R, Weiss M, de Montigny C, Blier P (1998) Effect of acute, short- and long-term milnacipran administration on rat locus coeruleus noradrenergic and dorsal raphe serotonergic neurons. Neuropharmacology 37(7):905–918

    Article  PubMed  CAS  Google Scholar 

  • Moroz G (2004) High-potency benzodiazepines: recent clinical results. J Clin Psychiatry 65(Suppl 5):13–18

    PubMed  CAS  Google Scholar 

  • Nashold BS Jr, Wilson WP, Slaughter DG (1969) Sensations evoked by stimulation in the midbrain of man. J Neurosurg 30:14–24

    PubMed  Google Scholar 

  • Nogueira RL, Graeff FG (1995) Role of 5-HT receptor subtypes in the modulation of dorsal periaqueductal gray generated aversion. Pharmacol Biochem Behav 52:1–6

    Article  PubMed  CAS  Google Scholar 

  • Olds ME, Olds J (1962) Approach-escape interactions in rat brain. Am J Physiol 203:803–810

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates 3rd edn.. Academic, San Diego

    Google Scholar 

  • Pecknold JC (1997) A risk-benefit assessment of buspirone in the treatment of anxiety disorders. Drug Saf 16(2):118–132

    Article  PubMed  CAS  Google Scholar 

  • Petty F, Trivedi MH, Fulton M, Rush AJ (1995) Benzodiazepines as antidepressants: does GABA play a role in depression? Biol Psychiatry 38(9):578–591

    Article  PubMed  CAS  Google Scholar 

  • Schenberg LC, Bittencourt AS, Sudre EC, Vargas LC (2001) Modeling panic attacks. Neurosci Biobehav Rev 25:647–659

    Article  PubMed  CAS  Google Scholar 

  • Schütz MT, de Aguiar JC, Graeff FG (1985) Anti-aversive role of serotonin in the dorsal periaqueductal grey matter. Psychopharmacology 85:340–345

    Article  PubMed  Google Scholar 

  • Sheehan DV, Raj AB, Harnett-Sheehan K, Soto S, Knapp E (1993) The relative efficacy of high-dose buspirone and alprazolam in the treatment of panic disorder: a double-blind placebo-controlled study. Acta Psychiatr Scand 88:1–11

    Article  PubMed  CAS  Google Scholar 

  • Soderpalm B (1987) Pharmacology of the benzodiazepines; with special emphasis on alprazolam. Acta Psychiatr Scand Suppl 335:39–46

    Article  PubMed  CAS  Google Scholar 

  • Susman J, Klee B (2005) The role of high-potency benzodiazepines in the treatment of panic disorder. Prim Care Companion J Clin Psychiat 7:5–11

    Google Scholar 

  • Svensson TH, Bunney BS, Aghajanian GK (1975) Inhibition of both noradrenergic and serotonergic neurons in brain by the alpha-adrenergic agonist clonidine. Brain Res 92(2):291–306

    Article  PubMed  CAS  Google Scholar 

  • Tanay VM, Greenshaw AJ, Baker GB, Bateson AN (2001) Common effects of chronically administered antipanic drugs on brainstem GABA(A) receptor subunit gene expression. Mol Psychiatry 6(4):404–412

    Article  PubMed  CAS  Google Scholar 

  • Thomas DR, Gittins SA, Collin LL, Middlemiss DN, Riley G, Hagan J, Gloger I, Ellis CE, Forbes IT, Brown AM (1998) Functional characterisation of the human cloned 5-HT7 receptor (long form); antagonist profile of SB-258719. Br J Pharmacol 124(6):1300–1306

    Article  PubMed  CAS  Google Scholar 

  • van Vliet IM, den Boer JA, Westenberg HG, Slaap BR (1996) A double-blind comparative study of brofaromine and fluvoxamine in outpatients with panic disorder. J Clin Psychopharmacol 16(4):299–306

    Article  PubMed  Google Scholar 

  • Zanoveli JM, Nogueira RL, Zangrossi H Jr (2005) Chronic imipramine treatment sensitizes 5-HT1A and 5-HT2A receptors in the dorsal periaqueductal gray matter: evidence from the elevated T-maze test of anxiety. Behav Pharmacol 16(7):543–552

    Article  PubMed  CAS  Google Scholar 

  • Zanoveli JM, Nogueira RL, Zangrossi H Jr (2007) Enhanced reactivity of 5-HT1A receptors in the rat dorsal periaqueductal gray matter after chronic treatment with fluoxetine and sertraline: evidence from the elevated T-maze. Neuropharmacology 52(4):1188–1195

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Prof Neil McNaughton and Robert Munn for valuable suggestions to the manuscript and Afonso Paulo Padovan for expert technical assistance. This is study was funded by FAPESP and CNPq, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélio Zangrossi Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Bortoli, V.C., Nogueira, R.L. & Zangrossi, H. Alprazolam potentiates the antiaversive effect induced by the activation of 5-HT1A and 5-HT2A receptors in the rat dorsal periaqueductal gray. Psychopharmacology 198, 341–349 (2008). https://doi.org/10.1007/s00213-008-1134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1134-7

Keywords

Navigation