Skip to main content
Log in

Striatal dopamine D2 receptors in medication-naive patients with major depressive disorder as assessed with [11C]raclopride PET

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Among other monoamine neurotransmitters, dopamine is implicated in the pathophysiology of major depression. Experimental studies suggest the involvement of the mesolimbic dopamine system in the mechanism of action of antidepressant drugs. Previous in vivo imaging studies have studied striatal dopamine D2 receptor availability in depression but the results are equivocal thus far.

Objective

To study the striatal and thalamic dopamine D2 receptor availability in drug-naive patients with major depression was the aim of this study.

Materials and methods

Caudate, putamen, and thalamic dopamine D2 receptor availability was estimated using positron emission tomography and [11C]raclopride in 25 treatment-seeking drug-free patients (of whom 24 were drug-naive) with major depression (primary care patients) as well as in 19 demographically similar healthy control subjects. Receptor availability was expressed as the binding potential (BPND), and analyses were carried out based on both regional and voxel-level BPND estimates.

Results

No statistically significant differences in [11C]raclopride BPND were observed between the groups either in the caudate nucleus (+1.7%, CI −4.8% to +8.3%), putamen (−1.0%, CI −7.2% to 5.1%), thalamus (−2.4%, CI −8.7% to 4.0%), or ventral striatum (−3.8%, CI −9.3% to +1.6%). In the patients, depressive symptoms were not associated with [11C]raclopride BPND in any region.

Conclusions

The findings in this sample of treatment-seeking, drug-naive and predominantly first-episode patients with major depression do not support the involvement of striatal dopamine D2 receptors in the pathophysiology of the illness, but do not exclude the potential importance of dopaminergic mechanisms in antidepressant drug action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ågren H, Reibring L, Hartvig P, Tedroff J, Bjurling P, Lundqvist H, Långström B (1993) Monoamine metabolism in human prefrontal cortex and basal ganglia. PET studies using [beta-11C]1-5-hydroxytryptophan and [beta-11C]L-dopa in healthy volunteers and patients with unipolar major depression. Depression 1:71–81

    Article  Google Scholar 

  • Allard P, Norlen M (2001) Caudate nucleus dopamine D2 receptors in depressed suicide victims. Neuropsychobiology 44:70–73

    Article  PubMed  CAS  Google Scholar 

  • Argyelan M, Szabo Z, Kanyo B, Tanacs A, Kovacs Z, Janka Z, Pavics L (2005) Dopamine transporter availability in medication free and in bupropion treated depression: a 99mTc-TRODAT-1 SPECT study. J Affect Disord 89:115–123

    Article  PubMed  CAS  Google Scholar 

  • Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–71

    PubMed  CAS  Google Scholar 

  • Bowden C, Theodorou AE, Cheetham SC, Lowther S, Katona CL, Crompton MR, Horton RW (1997) Dopamine D1 and D2 receptor binding sites in brain samples from depressed suicides and controls. Brain Res 752:227–233

    Article  PubMed  CAS  Google Scholar 

  • Brunswick DJ, Amsterdam JD, Mozley PD, Newberg A (2003) Greater availability of brain dopamine transporters in major depression shown by [99mTc]TRODAT-1 SPECT imaging. Am J Psychiatry 160:1836–1841

    Article  PubMed  Google Scholar 

  • D’Aquila PS, Collu M, Gessa GL, Serra G (2000) The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol 405:365–373

    Article  PubMed  CAS  Google Scholar 

  • D’haenen HA, Bossuyt A (1994) Dopamine D2 receptors in depression measured with single photon emission computed tomography. Biol Psychiatry 35:28–32

    Article  Google Scholar 

  • Drevets WC, Gautier C, Price JC, Kupfer DJ, Kinahan PE, Grace AA, Price JL, Mathis CA (2001) Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 49:81–96

    Article  PubMed  CAS  Google Scholar 

  • Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64:327–337

    Article  PubMed  CAS  Google Scholar 

  • Dupont WD, Plummer WD (1990) Power and sample size calculations: a review and computer program control. Control Clin Trials 11:116–128

    Article  PubMed  CAS  Google Scholar 

  • Ebert D, Feistel H, Loew T, Pirner A (1996) Dopamine and depression—striatal dopamine D2 receptor SPECT before and after antidepressant therapy. Psychopharmacology 126:91–94

    Article  PubMed  CAS  Google Scholar 

  • Finnema SJ, Seneca N, Farde L, Shchulkin E, Sóvágó J, Gulyás B, Wikström JV, Innis RB, Neumeyer JL, Halldin C (2005) A preliminary PET evaluation of the new dopamine D2 receptor agonist [11C]MNPA in cynomolgus monkey. Nucl Med Biol 32:353–360

    Article  PubMed  CAS  Google Scholar 

  • First MB, Spitzer RL, Gibbon M, Williams JB (1997) Structured clinical interview for DSM-Axis I disorders—clinician version (SCID-CV). American Psychiatric, Washington, DC

    Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith C, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  • Gershon AA, Vishne T, Grunhaus L (2007) Dopamine D2-like receptors and the antidepressant response. Biol Psychiatry 61:145–153

    Article  PubMed  CAS  Google Scholar 

  • Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6:279–287

    Article  PubMed  CAS  Google Scholar 

  • Hamilton M (1967) Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol 6:278–296

    PubMed  CAS  Google Scholar 

  • Hirvonen J, Aalto S, Lumme V, Någren K, Kajander J, Vilkman H, Hagelberg N, Oikonen V, Hia J et al (2003) Measurement of striatal and thalamic dopamine D2 receptor binding with [11C]raclopride. Nucl Med Commun 24:1207–1214

    Article  PubMed  CAS  Google Scholar 

  • Hirvonen J, van Erp TGM, Huttunen J, Aalto S, Någren K, Huttunen M, Lönnqvist J, Kaprio J, Hia J, Cannon TD et al (2005) Increased caudate dopamine D2 receptor availability as a genetic marker for schizophrenia. Arch Gen Psychiatry 62:371–378

    Article  PubMed  CAS  Google Scholar 

  • Hirvonen J, van Erp TG, Huttunen J, Någren K, Huttunen M, Aalto S, Lönnqvist J, Kaprio J, Cannon TD, Hia J et al (2006) Striatal dopamine D1 and D2 receptor balance in twins at increased genetic risk for schizophrenia. Psychiatry Res Neuroimaging 146:13–20

    Article  CAS  Google Scholar 

  • Hwang DR, Narendran R, Laruelle M (2005) Positron-labeled dopamine agonists for probing the high affinity states of dopamine subtype 2 receptors. Bioconjug Chem 16:27–31

    Article  PubMed  CAS  Google Scholar 

  • Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539 May

    Article  PubMed  CAS  Google Scholar 

  • Joel D, Weiner I (2000) The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96:451–474

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Mann JJ (1992) Role of the dopaminergic system in depression. Biol Psychiatry 32:1–17

    Article  PubMed  CAS  Google Scholar 

  • Klimek V, Schenck JE, Han H, Stockmeier CA, Ordway GA (2002) Dopaminergic abnormalities in amygdaloid nuclei in major depression: a post-mortem study. Biol Psychiatry 52:740–748

    Article  PubMed  CAS  Google Scholar 

  • Klimke A, Larisch R, Janz A, Vosberg H, Müller-Gärtner HW, Gaebel W (1999) Dopamine D2 receptor binding before and after treatment of major depression measured by [123I]IBZM SPECT. Psychiatry Res 90:91–101

    Article  PubMed  CAS  Google Scholar 

  • Kuroda Y, Motohashi N, Ito H, Ito S, Takano A, Nishikawa T, Suhara T (2006) Effects of repetitive transcranial magnetic stimulation on [11C]raclopride binding and cognitive function in patients with depression. J Affect Disord 95:35–42

    Article  PubMed  CAS  Google Scholar 

  • Laasonen-Balk T, Kuikka J, Viinamäki H, Husso-Saastamoinen M, Lehtonen J, Tiihonen J (1999) Striatal dopamine transporter density in major depression. Psychopharmacology 144:282–285

    Article  PubMed  CAS  Google Scholar 

  • Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 203:423–451

    Article  Google Scholar 

  • Malhi GS, Berk M (2007) Does dopamine dysfunction drive depression. Acta Psychiatr Scand 115(Suppl 433):116–124

    Article  Google Scholar 

  • Malison RT, Price LH, Berman R, van Dyck CH, Pelton GH, Carpenter L, Sanacora G, Owens MJ, Nemeroff CB, Rajeevan N, Baldwin RM, Seibyl JP, Innis RB, Charney DS (1998) Reduced brain serotonin transporter availability in major depression as measured by [123I]-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane and single photon emission computed tomography. Biol Psychiatry 44:1090–1098

    Article  PubMed  CAS  Google Scholar 

  • Mawlawi O, Martinez D, Slifstein M, Broft A, Chatterjee R, Hwang DR, Huang Y, Simpson N, Ngo K, Van Heertum R, Laruelle M (2001) Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D2 receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab 21:1034–1057

    Article  PubMed  CAS  Google Scholar 

  • Meyer JH, Gunn RN, Myers R, Grasby PM (1999) Assessment of spatial normalization of PET ligand images using ligand-specific templates. Neuroimage 9:545–553

    Article  PubMed  CAS  Google Scholar 

  • Meyer JH, McNeely HE, Sagrati S, Boovariwala A, Martin K, Verhoeff NPLG, Wilson AA, Houle S (2006) Elevated putamen D2 receptor binding potential in major depression with motor retardation: an [11C]raclopride positron emission tomography study. Am J Psychiatry 163:1594–1602

    Article  PubMed  Google Scholar 

  • Montgomery AJ, Stokes P, Kitamura Y, Grasby PM (2007) Extrastriatal D2 and striatal D2 receptor in depressive illness: pilot PET studies using [11C]FLB 457 and [11C]raclopride. J Affect Disord 101:113–122

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Carlezon WA Jr. (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Nieoullon A (2002) Dopamine and the regulation of cognition and attention. Prog Neurobiol 67:53–83

    Article  PubMed  CAS  Google Scholar 

  • Paillere-Martinot ML, Bragulat V, Artiges E, Dolle F, Hinnen F, Jouvent R, Martinot JL (2001) Decreased presynaptic dopamine function in the left caudate of depressed patients with affective flattening and psychomotor retardation. Am J Psychiatry 158:314–316

    Article  Google Scholar 

  • Parsey RV, Oquendo MA, Zea-Ponce Y, Rodenhiser J, Kegeles LS, Pratap M, Cooper TB, Van Heertum R, Mann JJ, Laruelle M (2001) Dopamine D2 receptor availability and amphetamine-induced dopamine release in unipolar depression. Biol Psychiatry 50:313–322

    Article  PubMed  CAS  Google Scholar 

  • Penttilä J, Kajander J, Aalto S, Hirvonen J, Någren K, Ilonen T, Syvälahti E, Hia J et al (2004) Effects of fluoxetine on dopamine D2 receptors in the human brain—a positron emission tomography study with [11C]raclopride. Int J Neuropsychopharmacol 7:431–439

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Hia J, Ruotsalainen U, Sako E, Laihinen A, Någren K, Lehikoinen P, Oikonen V, Syvälahti E et al (1993) Decrease of human striatal dopamine D2 density with age: a PET study with [11C]raclopride. J Cereb Blood Flow Metab 13:310–314

    Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522

    PubMed  CAS  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    PubMed  CAS  Google Scholar 

  • Shah PJ, Ogilvie AD, Goodwin GM, Ebmeier KP (1997) Clinical and psychometric correlates of dopamine D2 binding in depression. Psychol Med 127:1247–1256

    Article  Google Scholar 

  • Talvik M, Nordström AL, Okubo Y, Olsson H, Borg J, Halldin C, Farde L (2006) Dopamine D2 receptor binding in drug-naïve patients with schizophrenia examined with raclopride-C11 and positron emission tomography. Psychiatry Res 148(2–3):165–73

    PubMed  CAS  Google Scholar 

  • Tiihonen J, Kuoppamaki M, Någren K, Bergman J, Eronen E, Syvälahti E, Hia J et al (1996) Serotonergic modulation of striatal D2 dopamine receptor binding in humans measured with positron emission tomography. Psychopharmacology 126:277–280

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM (2001) Pharmacology and behavioural pharmacology of the mesocortical dopamine system. Prog Neurobiol 63:241–320

    Article  PubMed  CAS  Google Scholar 

  • Willeit M, Ginovart N, Kapur S, Houle S, Hussey D, Seeman P, Wilson AA (2006) High-affinity states of human brain dopamine D2/3 receptors imaged by the agonist [11C]-(+)-PHNO. Biol Psychiatry 59:389–394

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Signe and Ane Gyllenberg Foundation, The Social Insurance Institution of Finland, and the Turku University Central Hospital (grant P3848). The staffs of Turku PET Centre and the MRI Unit of Turku University Central Hospital are acknowledged for skillful assistance in performing PET and MRI scanning.

Financial disclosures

Dr. Hirvonen has received lecture fees from AstraZeneca, Bristol-Myers Squibb, Janssen-Cilag, Lundbeck, and Novartis, congress travel grants from AstraZeneca and Lundbeck, and research funding from Orion Pharma and Lundbeck. Dr. Karlsson has received lecture fees from AstraZeneca, Eli Lilly, GlaxoSmithKline, Janssen-Cilag, Lundbeck, and Wyeth. Dr. Markkula has received lecture fees from Eli Lilly, GlaxoSmithKline, and Janssen-Cilag. Dr. Hietala has received lecture fees from AstraZeneca, Bristol-Myers Squibb, Eli Lilly, Janssen-Cilag, and Lundbeck, congress travel grants from AstraZeneca, Bristol-Myers Squibb, and Eli Lilly, and has acted as a consultant for Orion Pharma. Drs. Kajander, Rasi-Hakala, Någren, and Salminen report no biomedical financial interests or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussi Hirvonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirvonen, J., Karlsson, H., Kajander, J. et al. Striatal dopamine D2 receptors in medication-naive patients with major depressive disorder as assessed with [11C]raclopride PET. Psychopharmacology 197, 581–590 (2008). https://doi.org/10.1007/s00213-008-1088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1088-9

Keywords

Navigation