Skip to main content
Log in

The effects of methamphetamine on core body temperature in the rat—PART 1: chronic treatment and ambient temperature

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Stimulants such as methamphetamine (METH) alter core temperature in a manner that is dependent on ambient temperature and that shows tolerance after chronic use. Our objectives were to (1) determine whether tolerance to METH-induced hyperthermia was a consequence of neurotoxicity to dopamine or serotonin and (2) determine the relationship between ambient temperature and chronic treatment on the METH-induced temperature response.

Materials and methods

Rats were treated with 1.0, 5.0, or 10.0 mg/kg METH at 24°C (experiment 1) or treated with 5.0 mg/kg METH at 20°C, 24°C, or 28°C (experiment 2). Treatment occurred for 12 days, and temperature measurements were made once per minute telemetrically during 7-h sessions in computer-regulated environments.

Results

Peak increases in core temperature occurred at 60 min post-treatment for the 1.0 and 10.0 mg/kg doses, and at 180 min for the 5.0 mg/kg dose. Tolerance-like effects were seen with chronic 5.0 (mixed results) and 10.0 mg/kg METH in the absence of dopamine or serotonin depletions measured 2 weeks after the completion of treatment. After 5.0 mg/kg METH, variations in ambient temperature resulted in an early flexible change in core temperature (phase 1) (hyperthermia at 28° and hypothermia at 20°) and a later inflexible hyperthermia (phase 2).

Conclusions

The results suggest that (1) the peak effect of different doses of METH occurs at different times (24°), (2) the diminished temperature response with chronic METH treatment was not associated with long-term dopamine and serotonin depletions, and (3) a two-phase temperature response to METH may reflect two independent mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ando K, Johanson CE, Seiden LS, Schuster CR (1985) Sensitivity changes to dopaminergic agents in fine motor control of rhesus monkeys after repeated methamphetamine administration. Pharmacol Biochem Behav 22:737–743

    Article  PubMed  CAS  Google Scholar 

  • Axt KJ, Molliver ME (1991) Immunocytochemical evidence for methamphetamine-induced serotonergic axon loss in the rat brain. Synapse 9:302–313

    Article  PubMed  CAS  Google Scholar 

  • Bowyer JF, Tank AW, Newport GD, Slikker W, Ali SF, Holson RR (1992) The influence of environmental temperature on the transient effects of methamphetamine on dopamine levels and dopamine release in rat striatum. J Pharmacol Exp Ther 260:817–824

    PubMed  CAS  Google Scholar 

  • Bowyer JF, Davies DL, Schmued L, Broening HW, Newport GD, Slikker W, Holson RR (1994) Further studies of the role of hyperthermia in methamphetamine neurotoxicity. J Pharmacol Exp Ther 268:1571–1580

    PubMed  CAS  Google Scholar 

  • Brecht ML, von Mayrhauser C, Anglin MD (2000) Predictors of relapse after treatment for methamphetamine use. J Psychoactive Drugs 32:211–220

    PubMed  CAS  Google Scholar 

  • Cass WA, Manning MW, Dugan MT (1998) Effects of neurotoxic doses of methamphetamine on potassium and amphetamine evoked overflow of dopamine in the striatum of awake rats. Neurosci Lett 248:175–178

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Ernst T, Speck O, Patel H, DeSilva M, Leonido-Yee M, Miller EN (2002) Perfusion MRI and computerized cognitive test abnormalities in abstinent methamphetamine users. Psychiatry Res 114:65–79

    Article  PubMed  Google Scholar 

  • Chang L, Alicata D, Ernst T, Volkow N (2007) Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction 102(Suppl 1):16–32

    Article  PubMed  Google Scholar 

  • Comer SD, Hart CL, Ward AS, Haney M, Foltin RW, Fischman MW (2001) Effects of repeated oral methamphetamine administration in humans. Psychopharmacology (Berl) 155:397–404

    Article  CAS  Google Scholar 

  • Cook CE, Jeffcoat AR, Sadler BM, Hill JM, Voyksner RD, Pugh DE, White WR, Perez-Reyes M (1992) Pharmacokinetics of oral methamphetamine and effects of repeated daily dosing in humans. Drug Metab Dispos 20:856–862

    PubMed  CAS  Google Scholar 

  • Crawshaw LI (1972) Effects of intracerebral 5-hydroxytryptamine injection on thermoregulation in rat. Physiol Behav 9:133–140

    Article  PubMed  CAS  Google Scholar 

  • Danaceau JP, Deering CE, Day JE, Smeal SJ, Johnson-Davis KL, Fleckenstein AE, Wilkins DG (2007) Persistence of tolerance to methamphetamine-induced monoamine deficits. Eur J Pharmacol 559:46–54

    Article  PubMed  CAS  Google Scholar 

  • Faunt JE, Crocker AD (1987) The effects of selective dopamine receptor agonists and antagonists on body temperature in rats. Eur J Pharmacol 133:243–247

    Article  PubMed  CAS  Google Scholar 

  • Finnegan KT, Ricaurte G, Seiden LS, Schuster CR (1982) Altered sensitivity to d-methylamphetamine, apomorphine, and haloperidol in rhesus monkeys depleted of caudate dopamine by repeated administration of d-methylamphetamine. Psychopharmacology 77:43–52

    Article  PubMed  CAS  Google Scholar 

  • Fukumura M, Cappon GD, Pu C, Broening HW, Vorhees CV (1998) A single dose model of methamphetamine-induced neurotoxicity in rats: effects on neostriatal monoamines and glial fibrillary acidic protein. Brain Res 806:1–7

    Article  PubMed  CAS  Google Scholar 

  • Gordon CJ (1990) Thermal biology of the laboratory rat. Physiol Behav 47:963–991

    Article  PubMed  CAS  Google Scholar 

  • Gordon CJ (1993) Temperature regulation in laboratory rodents. Cambridge University Press, New York

    Google Scholar 

  • Gudelsky GA, Koenig JI, Meltzer HY (1985) Altered responses to serotonergic agents in Fawn-Hooded rats. Pharmacol Biochem Behav 22:489–492

    Article  PubMed  CAS  Google Scholar 

  • Gudelsky GA, Koenig JI, Meltzer HY (1986) Thermoregulatory responses to serotonin (5-HT) receptor stimulation in the rat. Evidence for opposing roles of 5-HT2 and 5-HT1A receptors. Neuropharmacology 25:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Gygi MP, Gygi SP, Johnson M, Wilkins DG, Gibb JW, Hanson GR (1996) Mechanisms for tolerance to methamphetamine effects. Neuropharmacology 35:751–757

    Article  PubMed  CAS  Google Scholar 

  • Hansen MG, Whishaw IQ (1973) The effects of 6-hydroxydopamine, dopamine and dl-norepinephrine on food intake and water consumption, self-stimulation, temperature and electroencephalographic activity in the rat. Psychopharmacologia 29:33–44

    Article  PubMed  CAS  Google Scholar 

  • Ishigami A, Kubo S, Gotohda T, Tokunaga I (2003) The application of immunohistochemical findings in the diagnosis in methamphetamine-related death-two forensic autopsy cases. J Med Invest 50:112–116

    PubMed  Google Scholar 

  • Johnson-Davis KL, Truong JG, Fleckenstein AE, Wilkins DG (2004) Alterations in vesicular dopamine uptake contribute to tolerance to the neurotoxic effects of methamphetamine. J Pharmacol Exp Ther 309:578–586

    Article  PubMed  CAS  Google Scholar 

  • Keppel G (1991) Design and analysis: a researcher’s handbook. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Kitaichi K, Morishita Y, Doi Y, Ueyama J, Matsushima M, Zhao YL, Takagi K, Hasegawa T (2003) Increased plasma concentration and brain penetration of methamphetamine in behaviorally sensitized rats. Eur J Pharmacol 464:39–48

    Article  PubMed  CAS  Google Scholar 

  • Lee TF, Mora F, Myers RD (1985) Dopamine and thermoregulation: an evaluation with special reference to dopaminergic pathways. Neurosci Biobehav Rev 9:589–598

    Article  PubMed  CAS  Google Scholar 

  • Lewander T (1971) A mechanism for the development of tolerance to amphetamine in rats. Psychopharmacologia 21:17–31

    Article  PubMed  CAS  Google Scholar 

  • Makisumi T, Yoshida K, Watanabe T, Tan N, Murakami N, Morimoto A (1998) Sympatho-adrenal involvement in methamphetamine-induced hyperthermia through skeletal muscle hypermetabolism. Eur J Pharmacol 363:107–112

    Article  PubMed  CAS  Google Scholar 

  • Malberg J, Seiden LS (1998) Small changes in ambient temperature cause large changes in 3,4-methylenedioxymethamphetamine (MDMA)-induced serotonin neurotoxicity and core body temperature in the rat. J Neurosci 18:5086–5094

    PubMed  CAS  Google Scholar 

  • Mechan AO, Esteban B, O’Shea E, Elliott JM, Colado MI, Green AR (2002) The pharmacology of the acute hyperthermic response that follows administration of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) to rats. Br J Pharmacol 135:170–180

    Article  PubMed  CAS  Google Scholar 

  • Myles BM, Sabol KE (2008) The effects of methamphetamine on core body temperature in the rat. Part 2: an escalating regimen. Psychopharmacology DOI 10.1007/s00213-007-1060-0

  • NRC (1996) Guide for the care and use of laboratory animals. National Academy, Washington, DC

    Google Scholar 

  • Paulus MP, Hozack NE, Zauscher BE, Frank L, Brown GG, Braff DL, Schuckit MA (2002) Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology 26:53–63

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes M, White WR, McDonald SA, Hicks RE, Jeffcoat AR, Hill JM, Cook CE (1991) Clinical effects of daily methamphetamine administration. Clin Neuropharmacol 14:352–358

    Article  PubMed  CAS  Google Scholar 

  • Reiber C, Galloway G, Cohen J, Hsu JC, Lord RH (2000) A descriptive analysis of participant characteristics and patterns of substance use in the CSAT methamphetamine treatment project: the first six months. J Psychoactive Drugs 32:183–191

    PubMed  CAS  Google Scholar 

  • Ricaurte GA, Schuster CR, Seiden LS (1980) Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: a regional study. Brain Res 193:153–160

    Article  PubMed  CAS  Google Scholar 

  • Riddle EL, Kokoshka JM, Wilkins DG, Hanson GR, Fleckenstein AE (2002) Tolerance to the neurotoxic effects of methamphetamine in young rats. Eur J Pharmacol 435:181–185

    Article  PubMed  CAS  Google Scholar 

  • Rusyniak DE, Zaretskaia MV, Zaretsky DV, DiMicco JA (2007) 3,4-Methylenedioxymethamphetamine- and 8-hydroxy-2-di-n-propylamino-tetralin-induced hypothermia: role and location of 5-hydroxytryptamine 1A receptors. J Pharmacol Exp Ther 323:477–487

    Article  PubMed  CAS  Google Scholar 

  • Sabol KE, Richards JB, Yung K (2000) The effects of high-dose methamphetamine in the aging rat: differential reinforcement of low-rate 72-s schedule behavior and neurochemistry. J Pharmacol Exp Ther 294:850–863

    PubMed  CAS  Google Scholar 

  • Sabol KE, Roach JT, Broom SL, Ferreira C, Preau MM (2001) Long-term effects of a high-dose methamphetamine regimen on subsequent methamphetamine-induced dopamine release in vivo. Brain Res 892:122–129

    Article  PubMed  CAS  Google Scholar 

  • Salmi P, Ahlenius S (1998) Evidence for functional interactions between 5-HT1A and 5-HT2A receptors in rat thermoregulatory mechanisms. Pharmacol Toxicol 82:122–127

    Article  PubMed  CAS  Google Scholar 

  • Salmi P, Jimenez P, Ahlenius S (1993) Evidence for specific involvement of dopamine D1 and D2 receptors in the regulation of body temperature in the rat. Eur J Pharmacol 236:395–400

    Article  PubMed  CAS  Google Scholar 

  • Salo R, Nordahl TE, Possin K, Leamon M, Gibson DR, Galloway GP, Flynn NM, Henik A, Pfefferbaum A, Sullivan EV (2002) Preliminary evidence of reduced cognitive inhibition in methamphetamine-dependent individuals. Psychiatry Res 111:65–74

    Article  PubMed  Google Scholar 

  • Schmidt CJ (1987) Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine. J Pharmacol Exp Ther 240:1–7

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, Black CK, Taylor VL (1991) l-DOPA potentiation of the serotonergic deficits due to a single administration of 3,4-methylenedioxymethamphetamine, p-chloroamphetamine or methamphetamine to rats. Eur J Pharmacol 203:41–49

    Article  PubMed  CAS  Google Scholar 

  • Simon SL, Domier CP, Sim T, Richardson K, Rawson RA, Ling W (2002a) Cognitive performance of current methamphetamine and cocaine abusers. J Addict Dis 21:61–74

    Article  PubMed  Google Scholar 

  • Simon SL, Richardson K, Dacey J, Glynn S, Domier CP, Rawson RA, Ling W (2002b) A comparison of patterns of methamphetamine and cocaine use. J Addict Dis 21:35–44

    Article  PubMed  Google Scholar 

  • Sprague JE, Banks ML, Cook VJ, Mills EM (2003) Hypothalamic–pituitary–thyroid axis and sympathetic nervous system involvement in hyperthermia induced by 3,4-methylenedioxymethamphetamine (Ecstasy). J Pharmacol Exp Ther 305:159–166

    Article  PubMed  CAS  Google Scholar 

  • Sprague JE, Yang X, Sommers J, Gilman TL, Mills EM (2007) Roles of norepinephrine, free fatty acids, thyroid status, and skeletal muscle uncoupling protein 3 expression in sympathomimetic-induced thermogenesis. J Pharmacol Exp Ther 320:274–280

    Article  PubMed  CAS  Google Scholar 

  • Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y, Lee JY, Toga AW, Ling W, London ED (2004) Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 24:6028–6036

    Article  PubMed  CAS  Google Scholar 

  • Thornhill JA, Hirst M, Gowdey CW (1977) Variability in development of tolerance to repeated injections of low doses of dl-amphetamine in rats. Can J Physiol Pharmacol 55:1170–1178

    PubMed  CAS  Google Scholar 

  • Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, Sedler MJ, Gatley SJ, Hitzemann R, Ding YS, Logan J, Wong C, Miller EN (2001) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158:377–382

    Article  PubMed  CAS  Google Scholar 

  • Wagner GC, Ricaurte GA, Seiden LS, Schuster CR, Miller RJ, Westley J (1980) Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res 181:151–160

    Article  PubMed  CAS  Google Scholar 

  • Yehuda S, Wurtman RJ (1972) The effects of d-amphetamine and related drugs on colonic temperatures of rats kept at various ambient temperatures. Life Sci I 11:851–859

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This paper was supported by Biomedical Research Internship, NIH PHS IR25 GM55379, NIDA 08588, and the University of Mississippi Faculty Research Small Grants Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen E. Sabol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myles, B.J., Jarrett, L.A., Broom, S.L. et al. The effects of methamphetamine on core body temperature in the rat—PART 1: chronic treatment and ambient temperature. Psychopharmacology 198, 301–311 (2008). https://doi.org/10.1007/s00213-007-1061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-1061-z

Keywords

Navigation