Skip to main content
Log in

Long-term citalopram maintenance in mice: selective reduction of alcohol-heightened aggression

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Selective serotonin reuptake inhibitors (SSRIs) alleviate many affective disturbances in human clinical populations and are used in animal models to study the influence of serotonin (5-HT) on aggressive behavior and impulsivity.

Objective

We hypothesized that long-term SSRI treatment may reduce aggressive behavior escalated by alcohol consumption in mice. Therefore, aggression was tested in male CFW mice to determine whether repeated citalopram (CIT) administration reduces alcohol-heightened aggression.

Materials and methods

Resident male mice self-administered alcohol by performing an operant response on a panel placed in their home cage that delivered a 6% alcohol solution. Mice repeatedly confronted an intruder 15 min after self-administration of either 1 g/kg alcohol (EtOH) or water (H2O). Aggressive behaviors were higher in most mice when tests occurred after EtOH intake relative to H2O. Once baseline aggression was established, animals were injected (i.p.) twice daily with 10 mg/kg CIT or saline (SAL) for 32 days. Every 4 days throughout the CIT treatment period, aggressive encounters occurred 6 h after CIT injections, with testing conditions alternating between EtOH and H2O intake.

Results

Aggression was only modestly affected by CIT in the first 2 weeks of treatment. However, by day 17 of CIT treatment, alcohol-heightened aggressive behavior was abolished, while baseline aggression remained stable. These data lend support for the role of the 5-HT transporter in the control of alcohol-related aggressive behavior, and the time course of effects suggests that a change in density of 5HT1A autoreceptors is necessary before antidepressant drugs produce beneficial outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Auerbach SB, Hjorth S (1995) Effect of chronic administration of the selective serotonin (5-HT) uptake inhibitor citalopram on extracellular 5-HT and apparent autoreceptor sensitivity in rat forebrain in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol 352:597–606

    Article  CAS  Google Scholar 

  • Badawy AAB, Morgan CJ, Lovett JWT, Bradley DM, Thomas R (1995) Decrease in circulating tryptophan availability to the brain after acute ethanol consumption by normal volunteers: implications for alcohol-induced aggressive behaviour and depression. Pharmacopsychiatry 28:93–97

    Article  PubMed  Google Scholar 

  • Bannai M, Fish EW, Faccidomo S, Miczek KA (2007) Anti-aggressive effects of agonists at 5-HT1B receptors in the dorsal raphe nucleus of mice. Psychopharmacology 193:295–304

    Article  PubMed  CAS  Google Scholar 

  • Barkan T, Peled A, Modai I, Barak P, Weizman A, Rehavi M (2006) Serotonin transporter characteristics in lymphocytes and platelets of male aggressive schizophrenia patients compared to non-aggressive schizophrenia patients. Eur Neuropsychopharmacol 16:572–579

    Article  PubMed  CAS  Google Scholar 

  • Barnett V, Lewis T (1984) Outliers in statistical data. Wiley, Chichester

    Google Scholar 

  • Barr CS, Newman TK, Lindell S, Shannon C, Champoux M, Lesch KP, Suomi SJ, Goldman D, Higley JD (2004) Interaction between serotonin transporter gene variation and rearing condition in alcohol preference and consumption in female primates. Arch Gen Psychiatry 61:1146–1152

    Article  PubMed  CAS  Google Scholar 

  • Beitchman JH, Baldassarra L, Mik H, De Luca V, King N, Bender D, Ehtesham S, Kennedy JL (2006) Serotonin transporter polymorphisms and persistent pervasive childhood aggression. Am J Psychiatry 163:1103–1105

    Article  PubMed  Google Scholar 

  • Benmansour S, Cecchi M, Morilak DA, Gerhardt GA, Javors MA, Gould GG, Frazer A (1999) Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. J Neurosci 19:10494–10501

    PubMed  CAS  Google Scholar 

  • Blader JC (2006) Pharmacotherapy and postdischarge outcomes of child inpatients admitted for aggressive behavior. J Clin Psychopharmacology 26:419–425

    Article  Google Scholar 

  • Blier P, de Montigny C (1998) Possible serotonergic mechanisms underlying the antidepressant and anti-obsessive-compulsive disorder responses. Biol Psychiatry 44:313–323

    Article  PubMed  CAS  Google Scholar 

  • Bond AJ (2005) Antidepressant treatments and human aggression. Eur J Pharmacol 526:218–225

    Article  PubMed  CAS  Google Scholar 

  • Brady KT, Myrick H, McElroy S (1998) The relationship between substance use disorders, impulse control disorders, and pathological aggression. Am J Addict 7:221–230

    Article  PubMed  Google Scholar 

  • Brown GL, Goodwin FK, Ballenger JC, Goyer PF, Major LF (1979) Aggression in humans correlates with cerebrospinal-fluid amine metabolites. Psychiatry Res 1:131–139

    Article  PubMed  CAS  Google Scholar 

  • Brown GL, Ebert MH, Goyer PF, Jimerson DC, Klein WJ, Bunney WE, Goodwin FK (1982) Aggression, suicide, and serotonin—relationships to CSF amine metabolites. Am J Psychiatry 139:741–746

    PubMed  CAS  Google Scholar 

  • Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (1993) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262:578–580

    Article  PubMed  CAS  Google Scholar 

  • Bushman, Cooper (1990) Effects of alcohol on human aggression: an integrative research review. Psychol Bull 107:341–354

    Article  PubMed  CAS  Google Scholar 

  • Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854

    Article  PubMed  CAS  Google Scholar 

  • Ceglia I, Acconcia S, Racasso C, Colovic M, Caccia S, Invernizzi RW (2004) Effects of chronic treatment with escitalopram or citalopram on extracellular 5-HT in the prefrontal cortex of rats: role of 5-HT1A receptors. Br J Pharmacol 142:469–478

    Article  PubMed  CAS  Google Scholar 

  • Cloninger CR (1987) Neurogenetic adaptive-mechanisms in alcoholism. Science 236:410–416

    Article  PubMed  CAS  Google Scholar 

  • Connor TJ, Kelliher P, Shen Y, Harkin A, Kelly JP, Leonard BE (2000) Effect of subchronic antidepressant treatments on behavioral, neurochemical, and endocrine changes in the forced-swim test. Pharmacol Biochem Behav 65:591–597

    Article  PubMed  CAS  Google Scholar 

  • Cremers TIFH, de Boer P, Liao Y, Bosker FJ, den Boer JA, Westerink BHC, Wikström HV (2000) Augmentation with a 5-HT1A, but not a 5-HT1B receptor antagonist critically depends on the dose of citalopram. Eur J Pharmacol 397:63–74

    Article  PubMed  CAS  Google Scholar 

  • Crowley JJ, Blendy JA, Lucki I (2005) Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology 183:257–264

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Mombereau C (2004) In search of a depressed mouse: utility of models for studying behavior in genetically modified mice. Mol Psychiatry 9:326–357

    Article  PubMed  CAS  Google Scholar 

  • de Almeida RMM, Nikulina EM, Faccidomo S, Fish EW, Miczek KA (2001) Zolmitriptan—a 5-HT1B/D agonist, alcohol, and aggression in mice. Psychopharmacology 157:131–141

    Article  PubMed  Google Scholar 

  • de Almeida RMM, Rosa MM, Santos DM, Saft DM, Benini Q, Miczek KA (2006) 5-HT1B receptors, ventral orbitofrontal cortex, and aggressive behavior in mice. Psychopharmacology 185:441–450

    Article  PubMed  CAS  Google Scholar 

  • de Boer SF, Lesourd M, Mocaer E, Koolhaas JM (1999) Selective antiaggressive effects of alnespirone in resident-intruder test are mediated via 5-HT1A receptors: A comparative pharmacological study with 8-hydroxy-2-dipropylaminotetralin, ipsapirone, buspirone, eltoprazine, and WAY-100635. J Pharmacol Exp Ther 288:1125–1133

    PubMed  Google Scholar 

  • de Boer SF, Lesourd M, Mocaer E, Koolhaas JM (2000) Somatodendritic 5-HT1A autoreceptors mediate the anti-aggressive actions of 5-HT1A receptor agonists in rats: an ethopharmacological study with S-15535, alnespirone, and WAY-100635. Neuropsychopharmacology 23:20–33

    Article  PubMed  Google Scholar 

  • Delville Y, Mansour KM, Ferris CF (1996) Serotonin blocks vasopressin-facilitated offensive aggression: interactions within the ventrolateral hypothalamus of golden hamsters. Physiol Behav 59:813–816

    Article  PubMed  CAS  Google Scholar 

  • De Vry J, Schreiber R, Melon C, Dalmus M, Jentzsch KR (2004) 5-HT1A receptors are differentially involved in the anxiolytic- and antidepressant-like effects of 8-OH-DPAT and fluoxetine in the rat. Eur Neuropsychopharmacol 14:487–495

    Article  PubMed  CAS  Google Scholar 

  • Dziedzicka-Wasylewska M, Faron-Gorecka A, Kusmider M, Drozdowska E, Rogoz Z, Siwanowicz J, Caron MG, Bonisch H (2006) Effect of antidepressant drugs in mice lacking the norepinephrine transporter. Neuropsychopharmacology 31:2424–2432

    Article  PubMed  CAS  Google Scholar 

  • Fahlke C, Hansen S (1999) Alcohol responsiveness, hyperreactivity, and motor restlessness in an animal model for attention-deficit hyperactivity disorder. Psychopharmacology 146:1–9

    Article  PubMed  CAS  Google Scholar 

  • Fairbanks LA, Melega WP, Jorgensen MJ, Kaplan JR, McGuire MT (2001) Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vervet monkeys. Neuropsychopharmacology 24:370–378

    Article  PubMed  CAS  Google Scholar 

  • Ferris CF, Melloni RH, Koppel G, Perry KW, Fuller RW, Delville Y (1997) Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci 17:4331–4340

    PubMed  CAS  Google Scholar 

  • Fish EW, Faccidomo S, Miczek KA (1999) Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT1B receptor agonist CP-94,253. Psychopharmacology 146:391–399

    Article  PubMed  CAS  Google Scholar 

  • Fish EW, Faccidomo S, DeBold JF, Miczek KA (2001) Alcohol, allopregnanolone and aggression in mice. Psychopharmacology 153:473–483

    Article  PubMed  CAS  Google Scholar 

  • Fish EW, Faccidomo S, Gupta S, Miczek KA (2004) Anxiolytic-like effects of escitalopram, citalopram, and R-citalopram in maternally separated mouse pups. J Pharmacol Exp Ther 308:474–480

    Article  PubMed  CAS  Google Scholar 

  • Gruenewald PJ, Freisthler B, Remer L, LaScala EA, Treno A (2006) Ecological models of alcohol outlets and violent assaults: crime potentials and geospatial analysis. Addiction 101:666–677

    Article  PubMed  Google Scholar 

  • Haberstick BC, Smolen A, Hewitt JK (2006) Family-based association test of the 5HTTLPR and aggressive behavior in a general population sample of children. Biol Psychiatry 59:836–843

    Article  PubMed  CAS  Google Scholar 

  • Hennig J, Reuter M, Netter P, Burk C (2005) Two types of aggression are differentially related to serotonergic activity and the A779C TPH polymorphism. Behav Neurosci 119:16–25

    Article  PubMed  CAS  Google Scholar 

  • Higley JD, Bennett AJ (1999) Central nervous system serotonin and personality as variables contributing to excessive alcohol consumption in non-human primates. Alcohol Alcohol 34:402–418

    PubMed  CAS  Google Scholar 

  • Higley JD, Mehlman PT, Taub DM, Higley SB, Suomi SJ, Linnoila M, Vickers JH (1992) Cerebrospinal fluid monoamine and adrenal correlates of aggression in free-ranging rhesus monkeys. Arch Gen Psychiatry 49:436–441

    PubMed  CAS  Google Scholar 

  • Higley JD, Suomi SJ, Linnoila M (1996) A nonhuman primate model of type II excessive alcohol consumption? Part 1. Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentrations and diminished social competence correlate with excessive alcohol consumption. Alcohol Clin Exp Res 20:629–642

    Article  PubMed  CAS  Google Scholar 

  • Hinkers AS, Laucht M, Schmidt MH, Mann KF, Schumann G, Schuckit MA, Heinz A (2006) Low level of response to alcohol as associated with serotonin transporter genotype and high alcohol intake in adolescents. Biol Psychiatry 60:282–287

    Article  CAS  Google Scholar 

  • Hjorth S, Auerbach SB (1999) Autoreceptors remain functional after prolonged treatment with a serotonin reuptake inhibitor. Brain Res 835:224–228

    Article  PubMed  CAS  Google Scholar 

  • Hjorth S, Westlin D, Bengtsson HF (1997) WAY100635-induced augmentation of the 5-HT-elevating action of citalopram: relative importance of the dose of the 5-HT1A (auto)receptor blocker versus that of the 5-HT reuptake inhibitor. Neuropharmacology 36:461–465

    Article  PubMed  CAS  Google Scholar 

  • Hughes ZA, Starr KR, Scott CM, Newson MJ, Sharp T, Watson JM, Hagan JJ, Dawson LA (2007) Simultaneous blockade of 5-HT1A/B receptors and 5-HT transporters results in acute increases in extracellular 5-HT in both rats and guinea pigs: in vivo characterization of the novel 5-HT1A/B receptor antagonist/5-HT transport inhibitor SB-649915-B. Psychopharmacology 192:121–133

    Article  PubMed  CAS  Google Scholar 

  • Kalsner S (2000) The question of feedback at the somadendritic region and antidepressant drug action. Brain Res Bull 52:467–473

    Article  PubMed  CAS  Google Scholar 

  • Krug EG, Mercy JA, Dahlberg LL, Zwi AB, Lozano R (eds) (2002) World Report on Violence and Health. World Health Organization, Geneva, Switzerland

  • Kugelberg FC, Carlsson B, Ahlner J, Bengtsson F (2003) Stereoselective single-dose kinetics of Citalopram and its metabolites in rats. Chirality 15:622–629

    Article  PubMed  CAS  Google Scholar 

  • Linnoila M, Virkkunen M (1992) Aggression, suicidality, and serotonin. J Clin Psychiatry 53:46–51

    PubMed  Google Scholar 

  • Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, Goodwin FK (1983) Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci 33:2609–2614

    Article  PubMed  CAS  Google Scholar 

  • Mansari ME, Sanchez C, Chouvet G, Renaud B, Haddjeri N (2005) Effects of acute and long-term administration of escitalopram and citalopram on serotonin neurotransmission: an in vivo electrophysiological study in rat brain. Neuropsychopharmacology 30:1269–1277

    PubMed  Google Scholar 

  • Manuck SB, Flory JD, Ferrell RE, Mann JJ, Muldoon MF (2000) A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Res 95:9–23

    Article  PubMed  CAS  Google Scholar 

  • Mehlman PT, Higley JD, Faucher I, Lilly AA, Taub DM, Vickers J, Suomi SJ, Linnoila M (1994) Low CSF 5-HIAA concentrations and severe aggression and impaired impulse control in nonhuman-primates. Am J Psychiatry 151:1485–1491

    PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Buckholtz JW, Kolachana B, Hariri AR, Pezawas L, Blasi G, Wabnitz A, Honea R, Verchinski B, Callicott JH, Egan M, Mattay V, Weinberger DR (2006) Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci 103:6269–6274

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, de Almeida (2001) Oral drug self-administration in the home cage of mice: alcohol-heightened aggression and inhibition by the 5-HT1B agonist anpirtoline. Psychopharmacology 157:421–429

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, O’Donnell JM (1978) Intruder-evoked aggression in isolated and non-isolated mice—effects of psychomotor stimulants and l-dopa. Psychopharmacology 57:47–55

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, Weerts EM, Tornatzky W, DeBold JF, Vatne TM (1992) Alcohol and “bursts” of aggressive behavior: ethological analysis of individual differences in rats. Psychopharmacology 107:551–563

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, Barros HM, Sakoda L, Weerts EM (1998) Alcohol and heightened aggression in individual mice. Alcohol Clin Exp Res 22:1698–1705

    PubMed  CAS  Google Scholar 

  • Miczek KA, Fish EW, deBold JF, de Almeida RMM (2002) Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and γ-aminobutyric acid systems. Psychopharmacology 163:434–458

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, Faccidomo S, De Almeida RMM, Bannai M, Fish EW, DeBold JF (2004a) Escalated aggressive behavior—new pharmacotherapeutic approaches and opportunities Youth violence: scientific approaches to prevention. Ann NY Acad Sci 1036:336–355

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, Fish EW, De Almeida RMM, Faccidomo S, DeBold JF (2004b) Role of alcohol consumption in escalation to violence. Youth violence: scientific approaches to prevention. Ann NY Acad Sci 1036:278–289

    Article  PubMed  Google Scholar 

  • Mitchell PJ (2005) Antidepressant treatment and rodent aggressive behaviour. Eur J Pharmacol 526:147–162

    Article  PubMed  CAS  Google Scholar 

  • Mitchell PJ, Redfern PH (1997) Potentiation of the time-dependent, antidepressant-induced changes in the agonistic behaviour of resident rats by the 5-HT1A receptor antagonist, WAY-100635. Behav Pharmacol 8:585–606

    Article  PubMed  CAS  Google Scholar 

  • Mitchell PJ, Fletcher A, Redfern PH (1991) Is antidepressant efficacy revealed by drug-induced changes in rat behaviour exhibited during social interaction? Neurosci Biobehav Rev 15:539–544

    Article  PubMed  CAS  Google Scholar 

  • New AS, Buchsbaum MS, Hazlett EA, Goodman M, Koenigsberg HW, Lo J, Iskander L, Newmark R, Brand J, O’Flynn K, Siever LJ (2004) Fluoxetine increases relative metabolic rate in prefrontal cortex in impulsive aggression. Psychopharmacology 176:451–458

    Article  PubMed  CAS  Google Scholar 

  • Olivier B, Mos J, van Oorschot R, Hen R (1995) Serotonin receptors and animal models of aggressive behavior. Pharmacopsychiatry 28:80–90

    PubMed  Google Scholar 

  • Parker RN, Auerhahn K (1998) Alcohol, drugs, and violence. Annu Rev Sociology 24:291–311

    Article  Google Scholar 

  • Peremans K, Audenaert K, Hoybergs Y, Otte A, Goethals I, Gielen I, Blankaert P, Vervaet M, van Heeringen C, Dierckx R (2005) The effect of citalopram hydrobromide on 5-HT2A receptors in the impulsive-aggressive dog, as measured with I-123-5-I-R91150 SPECT. Eur J Nucl Med Mol Imaging 32:708–716

    Article  PubMed  CAS  Google Scholar 

  • Perrault G, Morel E, Zivkovic B, Sanger DJ (1992) Activity of litoxetine and other serotonin uptake inhibitors in the tail suspension test in mice. Pharmacol Biochem Behav 42:45–47

    Article  PubMed  CAS  Google Scholar 

  • Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A (2003) In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Natl Acad Sci 100:2035–2040

    Article  PubMed  CAS  Google Scholar 

  • Pińeyro G, Blier P, Dennis T, de Montigny C (1994) Desensitization of the neuronal 5-HT carrier following its long-term blockade. J Neurosci 14:3036–3047

    PubMed  Google Scholar 

  • Popova NK (2006) From genes to aggressive behavior: the role of serotonergic system. BioEssays 28:495–503

    Article  PubMed  CAS  Google Scholar 

  • Reist C, Nakamura K, Sagart E, Sokolski KN, Fujimoto KA (2003) Impulsive aggressive behavior: open-label treatment with citalopram. J Clin Psychiatry 64:81–85

    Article  PubMed  CAS  Google Scholar 

  • Rilke O, Iwill K, Jahkel M, Oehler J (2001) Behavioral and neurochemical effects of anpirtoline and citalopram in isolated and group housed mice. Prog Neuro-Psychopharmacol Biol Psychiatry 25:1125–1144

    Article  CAS  Google Scholar 

  • Samson HH (1986) Initiation of ethanol reinforcement using a sucrose-substitution procedure in food-sated and water-sated rats. Alcohol Clin Exp Res 10:436–442

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C, Bergqvist PBF, Brennum LT, Gupta S, Hogg S, Larsen A, Wilborg O (2003) Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytic activities. Psychopharmacology 167:353–362

    PubMed  CAS  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  PubMed  CAS  Google Scholar 

  • Summers CH, Korzan WJ, Lukkes JL, Watt MJ, Forster GL, Overli O, Hoglund E, Larson ET, Ronan PJ, Matter JM, Summers TR, Renner KJ, Greenberg N (2005) Does serotonin influence aggression? Comparing regional activity before and during social interaction. Physiol Biochem Zool 78:679–694

    Article  PubMed  CAS  Google Scholar 

  • Taravosh-Lahn K, Bastida C, Delville Y (2006) Differential responsiveness to fluoxetine during puberty. Behav Neurosci 120:1084–1092

    Article  PubMed  CAS  Google Scholar 

  • van der Vegt BJ, van de Wall EHEM, Moya-Albiol L, Martinez-Sanchis S, Kato K, de Boer SF, Koolhaas JM (2003a) Activation of serotonergic neurotransmission during the performance of aggressive behavior in rats. Behav Neurosci 117:667–674

    Article  PubMed  Google Scholar 

  • van der Vegt BJ, Lieuwes N, Cremers TIFH, de Boer SF, Koolhaas JM (2003b) Cerebrospinal fluid monoamine and metabolite concentrations and aggression in rats. Horm Behav 44:199–208

    Article  PubMed  CAS  Google Scholar 

  • van Erp AMM, Miczek KA (1997) Increased aggression after ethanol self administration in male resident rats. Psychopharmacology 131:287–295

    Article  PubMed  Google Scholar 

  • Verona E, Joiner TE, Johnson F, Bender TW (2006) Gender specific gene-environment interactions on laboratory-assessed aggression. Biol Psychol 71:33–41

    Article  PubMed  Google Scholar 

  • Wendland JR, Lesch KP, Newman TK, Timme A, Gachot-Neveu H, Thierry B, Suomi SJ (2006) Differential functional variability of serotonin transporter and monoamine oxidase A genes in macaque species displaying contrasting levels of aggression-related behavior. Behav Genet 36:163–172

    Article  PubMed  Google Scholar 

  • Wrase J, Reimold M, Puls I, Kienast T, Heinz A (2006) Serotonergic dysfunction: brain imaging and behavioral correlates. Cogn Affect Behav Neurosci 6:53–61

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Institute on Alcohol Abuse and Alcoholism (USPHS Award AA013983 and Fellowship Award F32AA015013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus A. Miczek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldwell, E.E., Miczek, K.A. Long-term citalopram maintenance in mice: selective reduction of alcohol-heightened aggression. Psychopharmacology 196, 407–416 (2008). https://doi.org/10.1007/s00213-007-0972-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0972-z

Keywords

Navigation