Skip to main content

Advertisement

Log in

The antipsychotic drug, fluphenazine, effectively reverses mechanical allodynia in rat models of neuropathic pain

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Fluphenazine is a potent antipsychotic drug used to treat schizophrenia and other psychotic symptoms. Its clinical benefit is mainly mediated by the antagonism of dopamine D2 receptors. We have recently discovered, however, that fluphenazine is also a potent sodium channel blocker, a property that may offer additional therapeutical indications, including analgesia.

Objectives

The present study sought to determine the analgesic effect of fluphenazine on neuropathic pain in animal models.

Methods

The effect of fluphenazine on mechanical allodynia was assessed in three animal neuropathic pain models, including spinal nerve ligation, chronic constriction nerve injury (CCI), and sural-spared sciatic nerve injury models.

Results

Systemic fluphenazine effectively attenuated mechanical allodynia in all three rat neuropathic pain models at doses (0.03–0.3 mg/kg) that approximate those used in rodent models of psychosis. In parallel with its in vivo antiallodynic effect, fluphenazine (3–30 μM) effectively suppressed the ectopic discharges in injured afferent fibers without affecting the propagation of action potentials evoked by electrical nerve stimulation in an ex vivo dorsal root ganglia (DRG)-nerve preparation excised from CCI rats. Furthermore, similar concentrations of fluphenazine significantly blocked sodium channels in DRG neurons.

Conclusions

The inhibitory action of fluphenazine on ectopic afferent discharges may be due to its ability to block voltage-gated sodium channels, and this may also provide a mechanistic basis for the drug’s antiallodynic effect in animal models of neuropathic pain. In summary, our study demonstrates that the classic antipsychotic drug fluphenazine has antiallodynic properties in multiple rodent models of nerve injury-induced neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SNL:

spinal nerve ligation

CCI:

chronic constriction nerve injury

SNI:

sural-spared sciatic nerve injury

TTXs:

tetrodotoxin-sensitive

TTXr:

tetrodotoxin-resistant

DRG:

dorsal root ganglia

L6 (4, 5):

lumbar 6 (4, 5)

PWT:

paw withdrawal threshold

ACSF:

artificial cerebrospinal fluid

DMEM:

Dulbecco’s modified Eagle’s medium

NGF:

nerve growth factor

INa :

sodium current

i.p.:

intraperitoneal

%MPE:

percent maximum possible effect

References

  • Abram SE, Yaksh TL (1994) Systemic lidocaine blocks nerve injury-induced hyperalgesia and nociceptor-driven spinal sensitization in the rat. Anesthesiology 80:383–391, (discussion 325A)

    Article  PubMed  CAS  Google Scholar 

  • Aravagiri M, Marder SR, Yuwiler A, Midha KK, Kula NS, Baldessarini RJ (1995) Distribution of fluphenazine and its metabolites in brain regions and other tissues of the rat. Neuropsychopharmacology 13:235–247

    Article  PubMed  CAS  Google Scholar 

  • Babbedge RC, Soper AJ, Gentry CT, Hood VC, Campbell EA, Urban L (1996) In vitro characterization of a peripheral afferent pathway of the rat after chronic sciatic nerve section. J Neurophysiol 76:3169–3177

    PubMed  CAS  Google Scholar 

  • Battla H, Silverblatt CW (1981) Clinical trial of amitriptyline and fluphenazine in diabetic peripheral neuropathy. South Med J 74:417–418

    PubMed  CAS  Google Scholar 

  • Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  PubMed  CAS  Google Scholar 

  • Boas RA, Covino BG, Shahnarian A (1982) Analgesic responses to i.v. lignocaine. Br J Anaesth 54:501–505

    Article  PubMed  CAS  Google Scholar 

  • Boucher TJ, Okuse K, Bennett DL, Munson JB, Wood JN, McMahon SB (2000) Potent analgesic effects of GDNF in neuropathic pain states. Science 290:124–127

    Article  PubMed  CAS  Google Scholar 

  • Brose WG, Cousins MJ (1991) Subcutaneous lidocaine for treatment of neuropathic cancer pain. Pain 45:145–148

    Article  PubMed  CAS  Google Scholar 

  • Burchiel KJ (1988) Carbamazepine inhibits spontaneous activity in experimental neuromas. Exp Neurol 102:249–253

    Article  PubMed  CAS  Google Scholar 

  • Cantrell AR, Tibbs VC, Westenbroek RE, Scheuer T, Catterall WA (1999) Dopaminergic modulation of voltage-gated Na+ current in rat hippocampal neurons requires anchoring of cAMP-dependent protein kinase. J Neurosci 19:RC21

    PubMed  CAS  Google Scholar 

  • Chang L, Luo L, Palmer JA, Sutton S, Wilson SJ, Barbier AJ, Breitenbucher JG, Chaplan SR, Webb M (2006) Inhibition of fatty acid amide hydrolase produces analgesia by multiple mechanisms. Br J Pharmacol 148:102–113

    Article  PubMed  CAS  Google Scholar 

  • Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  PubMed  CAS  Google Scholar 

  • Chaplan SR, Bach FW, Shafer SL, Yaksh TL (1995) Prolonged alleviation of tactile allodynia by intravenous lidocaine in neuropathic rats. Anesthesiology 83:775–785

    Article  PubMed  CAS  Google Scholar 

  • Chernoff DM, Strichartz GR (1990) Kinetics of local anesthetic inhibition of neuronal sodium currents. pH and hydrophobicity dependence. Biophys J 58:69–81

    Article  PubMed  CAS  Google Scholar 

  • Christensen AV, Arnt J, Svendsen O (1985) Pharmacological differentiation of dopamine D-1 and D-2 antagonists after single and repeated administration. Psychopharmacology Suppl 2:182–190

    PubMed  CAS  Google Scholar 

  • Crocker AD, Hemsley KM (2001) An animal model of extrapyramidal side effects induced by antipsychotic drugs: relationship with D2 dopamine receptor occupancy. Prog Neuropsychopharmacol Biol Psychiatry 25:573–590

    Article  PubMed  CAS  Google Scholar 

  • Davis JL, Lewis SB, Gerich JE, Kaplan RA, Schultz TA, Wallin JD (1977) Peripheral diabetic neuropathy treated with amitriptyline and fluphenazine. JAMA 238:2291–2292

    Article  PubMed  CAS  Google Scholar 

  • Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    Article  PubMed  CAS  Google Scholar 

  • Desai PM, Desai KP (2000) Combined fluphenazine and lidocaine for pain relief in head and neck cancers. Trop Doct 30:69–70

    PubMed  CAS  Google Scholar 

  • Devor M, Wall PD, Catalan N (1992) Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction. Pain 48:261–268

    Article  PubMed  CAS  Google Scholar 

  • Dixon WJ (1965) The up-and-down method for small samples. J Am Statist Assoc 60:967–978

    Article  Google Scholar 

  • Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462

    Article  PubMed  CAS  Google Scholar 

  • Docherty RJ, Farrag KJ (2006) The effect of dibutyryl cAMP on tetrodotoxin-sensitive and -resistant voltage-gated sodium currents in rat dorsal root ganglion neurons and the consequences for their sensitivity to lidocaine. Neuropharmacology 51:1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Dong X-W, Goregoaker S, Engler H, Zhou X, Mark L, Crona J, Terry R, Hunter J, Priestley T (2007) Small interfering RNA-mediated selective knockdown of Na(V)1.8 tetrodotoxin-resistant sodium channel reverses mechanical allodynia in neuropathic rats. Neuroscience 146:812–821

    Article  PubMed  CAS  Google Scholar 

  • Dunn LA, Atwater GE, Kilts CD (1993) Effects of antipsychotic drugs on latent inhibition: sensitivity and specificity of an animal behavioral model of clinical drug action. Psychopharmacology (Berl) 112:315–323

    Article  CAS  Google Scholar 

  • Galer BS, Harle J, Rowbotham MC (1996) Response to intravenous lidocaine infusion predicts subsequent response to oral mexiletine: a prospective study. J Pain Symptom Manage 12:161–167

    Article  PubMed  CAS  Google Scholar 

  • Gerald MC, Gupta TK, Snider RM (1979) Tolerance to amphetamine-induced impairment of rotarod performance in rats. Psychopharmacology (Berl) 61:317–318

    Article  CAS  Google Scholar 

  • Gomez-Perez FJ, Rull JA, Dies H, Rodriquez-Rivera JG, Gonzalez-Barranco J, Lozano-Castaneda O (1985) Nortriptyline and fluphenazine in the symptomatic treatment of diabetic neuropathy. A double-blind cross-over study. Pain 23:395–400

    Article  PubMed  CAS  Google Scholar 

  • Gracely RH, Lynch SA, Bennett GJ (1992) Painful neuropathy: altered central processing maintained dynamically by peripheral input. Pain 51:175–194

    Article  PubMed  CAS  Google Scholar 

  • Graff-Radford SB, Shaw LR, Naliboff BN (2000) Amitriptyline and fluphenazine in the treatment of postherpetic neuralgia. Clin J Pain 16:188–192

    Article  PubMed  CAS  Google Scholar 

  • Han HC, Lee DH, Chung JM (2000) Characteristics of ectopic discharges in a rat neuropathic pain model. Pain 84:253–261

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1977) Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 69:497–515

    Article  PubMed  CAS  Google Scholar 

  • Hubbard JW, Hadad S, Luo JP, McKay G, Midha KK (1999) Pharmacokinetics of fluphenazine, a highly lipophilic drug, estimated from a pulse dose of a stable isotopomer in dogs at steady state. J Pharm Sci 88:918–921

    Article  PubMed  CAS  Google Scholar 

  • Jelovac N, Sikiric P, Rucman R, Petek M, Marovic A, Perovic D, Seiwerth S, Mise S, Turkovic B, Dodig G, Miklic P, Buljat G, Prkacin I (1999) Pentadecapeptide BPC 157 attenuates disturbances induced by neuroleptics: the effect on catalepsy and gastric ulcers in mice and rats. Eur J Pharmacol 379:19–31

    Article  PubMed  CAS  Google Scholar 

  • Kajander KC, Bennett GJ (1992) Onset of a painful peripheral neuropathy in rat: a partial and differential deafferentation and spontaneous discharge in A beta and A delta primary afferent neurons. J Neurophysiol 68:734–744

    PubMed  CAS  Google Scholar 

  • Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    Article  PubMed  CAS  Google Scholar 

  • Konieczny J, Ossowska K, Schulze G, Coper H, Wolfarth S (1999) L-701,324, a selective antagonist at the glycine site of the NMDA receptor, counteracts haloperidol-induced muscle rigidity in rats. Psychopharmacology (Berl) 143:235–243

    Article  CAS  Google Scholar 

  • Levinson DF, Simpson GM, Singh H, Yadalam K, Jain A, Stephanos MJ, Silver P (1990) Fluphenazine dose, clinical response, and extrapyramidal symptoms during acute treatment. Arch Gen Psychiatry 47:761–768

    PubMed  CAS  Google Scholar 

  • Liu CN, Wall PD, Ben-Dor E, Michaelis M, Amir R, Devor M (2000) Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain 85:503–521

    Article  PubMed  CAS  Google Scholar 

  • Matar HE, Almerie MQ (2007) Oral fluphenazine versus placebo for schizophrenia. Cochrane Database Syst Rev (1):CD006352

  • Matzner O, Devor M (1994) Hyperexcitability at sites of nerve injury depends on voltage-sensitive Na+ channels. J Neurophysiol 72:349–359

    PubMed  CAS  Google Scholar 

  • Mitas JA 2nd, Mosley CA Jr, Drager AM (1983) Diabetic neuropathic pain: control by amitriptyline and fluphenazine in renal insufficiency. South Med J 76:462–463, 467

    PubMed  Google Scholar 

  • Nakamura S, Atsuta Y (2005) Effect of sodium channel blocker (mexiletine) on pathological ectopic firing pattern in a rat chronic constriction nerve injury model. J Orthop Sci 10:315–320

    Article  PubMed  CAS  Google Scholar 

  • Porreca F, Ossipov MH, Gebhart GF (2002) Chronic pain and medullary descending facilitation. Trends Neurosci 25:319–325

    Article  PubMed  CAS  Google Scholar 

  • Priestley T (2004) Voltage-gated sodium channels and pain. Curr Drug Targets CNS Neurol Disord 3:441–456

    Article  PubMed  CAS  Google Scholar 

  • Rorick-Kehn LM, Johnson BG, Knitowski KM, Salhoff CR, Witkin JM, Perry KW, Griffey KI, Tizzano JP, Monn JA, McKinzie DL, Schoepp DD (2007) In vivo pharmacological characterization of the structurally novel, potent, selective mGlu2/3 receptor agonist LY404039 in animal models of psychiatric disorders. Psychopharmacology (Berl) 193:121–136

    Article  CAS  Google Scholar 

  • Rowbotham MC, Reisner-Keller LA, Fields HL (1991) Both intravenous lidocaine and morphine reduce the pain of postherpetic neuralgia. Neurology 41:1024–1028

    PubMed  CAS  Google Scholar 

  • Schiffmann SN, Lledo PM, Vincent JD (1995) Dopamine D1 receptor modulates the voltage-gated sodium current in rat striatal neurones through a protein kinase A. J Physiol 483(Pt 1):95–107

    PubMed  CAS  Google Scholar 

  • Shimizu T, Iwata S, Morioka H, Masuyama T, Fukuda T, Nomoto M (2004) Antinociceptive mechanism of L-DOPA. Pain 110:246–249

    Article  PubMed  CAS  Google Scholar 

  • Sinnott CJ, Garfield JM, Strichartz GR (1999) Differential efficacy of intravenous lidocaine in alleviating ipsilateral versus contralateral neuropathic pain in the rat. Pain 80:521–531

    Article  PubMed  CAS  Google Scholar 

  • Smith PA (2004) Neuropathic pain: drug targets for current and future interventions. Drug News Perspect 17:5–17

    Article  PubMed  CAS  Google Scholar 

  • Sukhotinsky I, Ben-Dor E, Raber P, Devor M (2004) Key role of the dorsal root ganglion in neuropathic tactile hypersensibility. Eur J Pain 8:135–143

    Article  PubMed  Google Scholar 

  • Taub A (1973) Relief of postherpetic neuralgia with psychotropic drugs. J Neurosurg 39:235–239

    PubMed  CAS  Google Scholar 

  • Taylor IJ (1959) Clinical evaluation of a new phenothiazine tranquilizer, fluphenazine (prolixin). Am J Psychiatry 116:457–458

    PubMed  CAS  Google Scholar 

  • Varty GB, Grilli M, Forlani A, Fredduzzi S, Grzelak ME, Guthrie DH, Hodgson RA, Lu SX, Nicolussi E, Pond AJ, Parker EM, Hunter JC, Higgins GA, Reggiani A, Bertorelli R (2005) The antinociceptive and anxiolytic-like effects of the metabotropic glutamate receptor 5 (mGluR5) antagonists, MPEP and MTEP, and the mGluR1 antagonist, LY456236, in rodents: a comparison of efficacy and side-effect profiles. Psychopharmacology (Berl) 179:207–217

    Article  CAS  Google Scholar 

  • Wall PD, Devor M (1983) Sensory afferent impulses originate from dorsal root ganglia as well as from the periphery in normal and nerve injured rats. Pain 17:321–339

    Article  PubMed  CAS  Google Scholar 

  • Waxman SG (1999) The molecular pathophysiology of pain: abnormal expression of sodium channel genes and its contributions to hyperexcitability of primary sensory neurons. Pain Suppl 6:S133–S140

    Article  Google Scholar 

  • Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1769

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Zhang J, Petersen M, LaMotte RH (1995) Functional changes in dorsal root ganglion cells after chronic nerve constriction in the rat. J Neurophysiol 73:1811–1820

    PubMed  CAS  Google Scholar 

  • Zhou X, Dong XW, Priestley T (2006) The neuroleptic drug, fluphenazine, blocks neuronal voltage-gated sodium channels. Brain Res 1106:72–81

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Wei Dong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 44.0 KB)

Supplementary Fig. 1

Inhibition of sodium currents in DRG neurons by fluphenazine. (a), current-voltage relationship for whole-cell sodium currents, in medium sized DRG neurons, obtained in the absence of fluphenazine. Whole-cell currents were evoked using a series of depolarizing steps from a membrane potential of −120 mV, in 10-mV increments, to a final command potential of 50 mV (the voltage protocol shown in the insert). Peak current was evoked at −10 mV. Data are presented as the fraction of peak current (mean ± SEM, n = 7). (b), Effect of fluphenazine on total sodium currents in DRG neurons. The superimposed traces are representative peak sodium currents before and during bath application of 10 μM and 30 μM fluphenazine. Fluphenazine caused a dose-dependent inhibition of total sodium currents. (c), Effect of fluphenazine on TTXr sodium currents. The largest current represents total sodium current evoked at −10 mV. TTX (300 nM) was then added to the perfusate resulting, in this case, a ∼60% reduction in current amplitude (black line). This TTXr current was reduced by ∼30% following the perfusion of fluphenazine (10 μM). (d), Fluphenazine concentration-response curves for tonic block of total (○)(n = 5) and TTXr (•) (n = 5) currents recorded from DRG neurons. Fluphenazine showed slightly higher (∼4-fold) potency on TTXs currents compared with TTXr current. (GIF 67.2 KB)

High resolution image file (TIFF 14.9 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, XW., Jia, Y., Lu, S.X. et al. The antipsychotic drug, fluphenazine, effectively reverses mechanical allodynia in rat models of neuropathic pain. Psychopharmacology 195, 559–568 (2008). https://doi.org/10.1007/s00213-007-0942-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0942-5

Keywords

Navigation