Skip to main content
Log in

Neurotoxic effects of chronic restraint stress in the striatum of methamphetamine-exposed rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Stress is a common experience in drug abusers. Methamphetamine (METH) is an abused psychostimulant that damages dopamine and serotonin terminals through pro-oxidant mechanisms and glutamate-mediated excitotoxicity. Both METH and stress increase dopamine and glutamate release in the striatum. Since dopamine inhibits striatal glutamate release and METH depletes dopamine, stress-induced glutamate release may be disinhibited after METH exposure.

Objective

We examined if repeated stress would worsen excitotoxic damage to the striatum after METH pretreatment.

Materials and methods

In vivo microdialysis was used to examine stress-induced striatal glutamate release in rats pre-exposed to METH (7.5 mg/kg × 4 injections) or saline. The effects on striatal DA, serotonin, DAT, SERT, and spectrin proteolysis produced by chronic restraint stress (CRS, 6 h/day for 21 days) in the presence or absence of corticosterone synthesis inhibition by metyrapone (50 mg/kg) beginning 7 days after METH were also examined.

Results

Stress-induced glutamate release was augmented in rats pre-exposed to METH. CRS 7 days after METH enhanced METH-induced DAT depletions from 23 to 44% in the nonstressed versus stressed rats, respectively. Striatal SERT and serotonin tissue content were decreased by 51 and 36%, respectively, in rats exposed to both METH and CRS but was unchanged by either treatment alone. Spectrin proteolysis was increased by 53% in rats treated with both METH and CRS but was unaffected by either treatment alone. Metyrapone blocked the effects of CRS on METH-induced depletions of SERT but not DAT.

Conclusions

Exposure to chronic stress depleted striatal dopamine and serotonin terminal markers possibly through excitotoxic mechanisms in METH-treated rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abekawa T, Ohmori T, Koyama T (1994) Effects of repeated administration of a high dose of methamphetamine on dopamine and glutamate release in rat striatum and nucleus accumbens. Brain Res 643:276–281

    Article  PubMed  CAS  Google Scholar 

  • Bamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK (2004) Dopamine modulates release from corticostriatal terminals. J Neurosci 24:9541–9552

    Article  PubMed  CAS  Google Scholar 

  • Bi X, Chang V, Siman R, Tocco G, Baudry M (1996) Regional distribution and time-course of calpain activation following kainate-induced seizure activity in adult rat brain. Brain Res 726:98–108

    Article  PubMed  CAS  Google Scholar 

  • Brady KT, Sinha R (2005) Co-occurring mental and substance use disorders: the neurobiological effects of chronic stress. Am J Psychiatr 162:1483–1493

    Article  PubMed  Google Scholar 

  • Broom SL, Yamamoto BK (2005) Effects of subchronic methamphetamine exposure on basal dopamine and stress-induced dopamine release in the nucleus accumbens shell of rats. Psychopharmacology (Berl) 181:467–476

    Article  CAS  Google Scholar 

  • Brown JM, Quinton MS, Yamamoto BK (2005) Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. J Neurochem 95:429–436

    Article  PubMed  CAS  Google Scholar 

  • Burrows KB, Gudelsky G, Yamamoto BK (2000a) Rapid and transient inhibition of mitochondrial function following methamphetamine or 3,4-methylenedioxymethamphetamine administration. Eur J Pharmacol 398:11–18

    Article  PubMed  CAS  Google Scholar 

  • Burrows KB, Nixdorf WL, Yamamoto BK (2000b) Central administration of methamphetamine synergizes with metabolic inhibition to deplete striatal monoamines. J Pharmacol Exp Ther 292:853–860

    PubMed  CAS  Google Scholar 

  • Bustamante D, You ZB, Castel MN, Johansson S, Goiny M, Terenius L, Hokfelt T, Herrera-Marschitz M (2002) Effect of single and repeated methamphetamine treatment on neurotransmitter release in substantia nigra and neostriatum of the rat. J Neurochem 83:645–654

    Article  PubMed  CAS  Google Scholar 

  • Conrad CD, LeDoux JE, Magarinos AM, McEwen BS (1999) Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci 113:902–913

    Article  PubMed  CAS  Google Scholar 

  • Copeland BJ, Neff NH, Hadjiconstantinou M (2005) Enhanced dopamine uptake in the striatum following repeated restraint stress. Synapse 57:167–174

    Article  PubMed  CAS  Google Scholar 

  • Dal Zotto S, Marti O, Armario A (2003) Glucocorticoids are involved in the long-term effects of a single immobilization stress on the hypothalamic–pituitary–adrenal axis. Psychoneuroendocrinology 28:992–1009

    Article  CAS  Google Scholar 

  • de Souza EB (1987) Corticotropin-releasing factor receptors in the rat central nervous system: characterization and regional distribution. J Neurosci 7:88–100

    PubMed  Google Scholar 

  • Eyerman DJ, Yamamoto BK (2005) Lobeline attenuates methamphetamine-induced changes in vesicular monoamine transporter 2 immunoreactivity and monoamine depletions in the striatum. J Pharmacol Exp Ther 312:160–169

    Article  PubMed  CAS  Google Scholar 

  • Filipenko ML, Beilina AG, Alekseyenko OV, Dolgov VV, Kudryavtseva NN (2002) Repeated experience of social defeats increases serotonin transporter and monoamine oxidase A mRNA levels in raphe nuclei of male mice. Neurosci Lett 321:25–28

    Article  PubMed  CAS  Google Scholar 

  • Fontella FU, Siqueira IR, Vasconcellos AP, Tabajara AS, Netto CA, Dalmaz C (2005) Repeated restraint stress induces oxidative damage in rat hippocampus. Neurochem Res 30:105–111

    Article  PubMed  CAS  Google Scholar 

  • Green AR, De Souza RJ, Williams JL, Murray TK, Cross AJ (1992) The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in brain: evidence for the protective effect of chlormethiazole. Neuropharmacology 31:315–321

    Article  PubMed  CAS  Google Scholar 

  • Gurvits TV, Shenton ME, Hokama H, Ohta H, Lasko NB, Gilbertson MW, Orr SP, Kikinis R, Jolesz FA, McCarley RW, Pitman RK (1996) Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiatr 40:1091–1099

    Article  CAS  Google Scholar 

  • Imam SZ, el Yazal J, Newport GD, Itzhak Y, Cadet JL, Slikker W Jr, Ali SF (2001) Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann N Y Acad Sci 939:366–380

    Article  PubMed  CAS  Google Scholar 

  • Izzo E, Sanna PP, Koob GF (2005) Impairment of dopaminergic system function after chronic treatment with corticotropin-releasing factor. Pharmacol Biochem Behav 81:701–708

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Choi JH, Chang JW, Kim SW, Hwang O (2005) Immobilization stress causes increases in tetrahydrobiopterin, dopamine, and neuromelanin and oxidative damage in the nigrostriatal system. J Neurochem 95:89–98

    Article  PubMed  CAS  Google Scholar 

  • LaVoie MJ, Hastings TG (1999) Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci 19:1484–1491

    PubMed  CAS  Google Scholar 

  • Liu J, Wang X, Shigenaga MK, Yeo HC, Mori A, Ames BN (1996) Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J 10:1532–1538

    PubMed  CAS  Google Scholar 

  • Liu L, Tsuji M, Takeda H, Takada K, Matsumiya T (1999) Adrenocortical suppression blocks the enhancement of memory storage produced by exposure to psychological stress in rats. Brain Res 821:134–140

    Article  PubMed  CAS  Google Scholar 

  • Lowy MT, Wittenberg L, Yamamoto BK (1995) Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats. J Neurochem 65:268–274

    Article  PubMed  CAS  Google Scholar 

  • Madrigal JL, Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Rodrigo J, Leza JC (2001) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24:420–429

    Article  PubMed  CAS  Google Scholar 

  • Magarinos AM, McEwen BS (1995a) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 69:83–88

    Article  PubMed  CAS  Google Scholar 

  • Magarinos AM, McEwen BS (1995b) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69:89–98

    Article  PubMed  CAS  Google Scholar 

  • Mark KA, Soghomonian JJ, Yamamoto BK (2004) High-dose methamphetamine acutely activates the striatonigral pathway to increase striatal glutamate and mediate long-term dopamine toxicity. J Neurosci 24:11449–11456

    Article  PubMed  CAS  Google Scholar 

  • Matuszewich L, Yamamoto BK (2004a) Chronic stress augments the long-term and acute effects of methamphetamine. Neuroscience 124:637–646

    Article  CAS  Google Scholar 

  • Matuszewich L, Yamamoto BK (2004b) Effects of chronic stress on methamphetamine-induced dopamine depletions in the striatum. Ann N Y Acad Sci 1032:312–314

    Article  CAS  Google Scholar 

  • Minger SL, Geddes JW, Holtz ML, Craddock SD, Whiteheart SW, Siman RG, Pettigrew LC (1998) Glutamate receptor antagonists inhibit calpain-mediated cytoskeletal proteolysis in focal cerebral ischemia. Brain Res 810:181–199

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60:1650–1657

    Article  PubMed  CAS  Google Scholar 

  • Nash JF, Yamamoto BK (1992) Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3,4-methylenedioxymethamphetamine. Brain Res 581:237–243

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Quinton MS, Yamamoto BK (2006) Causes and consequences of methamphetamine and MDMA toxicity. AAPS J 8:E337–E347

    Article  PubMed  Google Scholar 

  • Ricaurte GA, Schuster CR, Seiden LS (1980) Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: a regional study. Brain Res 193:153–163

    Article  PubMed  CAS  Google Scholar 

  • Rocher C, Gardier AM (2001) Effects of repeated systemic administration of d-fenfluramine on serotonin and glutamate release in rat ventral hippocampus: comparison with methamphetamine using in vivo microdialysis. Naunyn Schmiedebergs Arch Pharmacol 363:422–428

    Article  PubMed  CAS  Google Scholar 

  • Sattler R, Tymianski M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78:3–13

    Article  PubMed  CAS  Google Scholar 

  • Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A 93:3908–3913

    Article  PubMed  CAS  Google Scholar 

  • Siman R, Noszek JC, Kegerise C (1989) Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci 9:1579–1590

    PubMed  CAS  Google Scholar 

  • Sinha R (2001) How does stress increase risk of drug abuse and relapse? Psychopharmacology (Berl) 158:343–359

    Article  CAS  Google Scholar 

  • Staszewski RD, Yamamoto BK (2006) Methamphetamine-induced spectrin proteolysis in the rat striatum. J Neurochem 96:1267–1276

    Article  PubMed  CAS  Google Scholar 

  • Stein BA, Sapolsky RM (1988) Chemical adrenalectomy reduces hippocampal damage induced by kainic acid. Brain Res. 473:175–180

    Article  PubMed  CAS  Google Scholar 

  • Stein-Behrens B, Mattson MP, Chang I, Yeh M, Sapolsky R (1994) Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus. J Neurosci 14:5373–5380

    PubMed  CAS  Google Scholar 

  • Stephans SE, Yamamoto BK (1994) Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux. Synapse 17:203–209

    Article  PubMed  CAS  Google Scholar 

  • Wagner GC, Ricaurte GA, Seiden LS, Schuster CR, Miller RJ, Westley J (1980) Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res 181:151–160

    Article  PubMed  CAS  Google Scholar 

  • Weiss F, Imperato A, Casu MA, Mascia MS, Gessa GL (1997) Opposite effects of stress on dopamine release in the limbic system of drug-naive and chronically amphetamine-treated rats. Eur J Pharmacol 337:219–222

    Article  PubMed  CAS  Google Scholar 

  • Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM, Schmunk GA, Shannak K, Haycock JW, Kish SJ (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2:699–703

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto BK, Davy S (1992) Dopaminergic modulation of glutamate release in striatum as measured by microdialysis. J Neurochem 58:1736–1742

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto BK, Zhu W (1998) The effects of methamphetamine on the production of free radicals and oxidative stress. J Pharmacol Exp Ther 287:107–114

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by DA07606 and DA16866.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinton, M.S., Yamamoto, B.K. Neurotoxic effects of chronic restraint stress in the striatum of methamphetamine-exposed rats. Psychopharmacology 193, 341–350 (2007). https://doi.org/10.1007/s00213-007-0796-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0796-x

Keywords

Navigation