Skip to main content
Log in

Tandem regulation of phosphoinositide signaling and acute behavioral effects induced by antidepressant agents in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Antidepressants increase synaptic monoamine concentrations, but the subsequent signaling events that produce the beneficial clinical effects remain unclear. Diverse antidepressants increase CDP-diacylglycerol, a crucial step in phosphoinositide signaling. Serotonin 5HT2 receptors, implicated in depression or the actions of some antidepressants, signal through phosphoinositide hydrolysis. Thus, cross talk between antidepressant-induced CDP-diacylglycerol and 5HT2 signaling could contribute to the antidepressant mechanism.

Objective

The objective of the study was to test the hypotheses that antidepressants enhance net signaling via 5HT2 receptors by augmenting the supply of phosphoinositide substrates and that this action contributes to the behavioral effects of the drugs.

Materials and methods

Brain slices pre-labeled with [3H]inositol in the presence of various antidepressant concentrations were washed and incubated with the 5HT2 agonist, α-methylserotonin, followed by measuring phosphoinositide synthesis and inositol phosphate accumulation. Further, rats administered antidepressants after pretreatment with neomycin to inhibit metabolic utilization of phosphoinositides were behaviorally evaluated in the forced swim test.

Results

Diverse antidepressants significantly enhanced phosphoinositide synthesis. While α-methylserotonin increased inositol phosphate accumulation, this effect was significantly accentuated in hippocampal or cortical tissues pre-incubated in the presence of imipramine, desipramine, fluoxetine, paroxetine, or maprotiline. Drug-induced behavioral antidepressant effects were reversed by neomycin pretreatment, whereas neomycin alone did not alter basal immobility times.

Conclusions

Antidepressants probably exert tandem neurochemical effects by increasing synaptic monoamine concentrations and by producing phosphoinositides used in 5HT2 receptor signaling. This combination of actions may constitute the mechanism of at least the acute behavioral effects of the drugs and could implicate aberrant neurolipid signaling in the pathophysiology of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arora RC, Meltzer HY (1989) Increased serotonin2 (5-HT2) receptor binding as measured by 3H-lysergic acid diethylamide (3H-LSD) in the blood platelets of depressed patients. Life Sci 44:725–734

    Article  PubMed  CAS  Google Scholar 

  • Berg KA, Stout BD, Maayani S, Clarke WP (2001) Differences in rapid desensitization of 5-hydroxytryptamine(2a) and 5-hydroxytryptamine(2c) receptor-mediated phospholipase C activation. J Pharmacol Exp Ther 299:593–602

    PubMed  CAS  Google Scholar 

  • Beyer CE, Boikess S, Luo B, Dawson LA (2002) Comparison of the effects of antidepressants on norepinephrine and serotonin concentrations in the rat frontal cortex: an in-vivo microdialysis study. J Psychopharmacol 16:297–304

    Article  PubMed  CAS  Google Scholar 

  • Brown E, Kendall DA, Nahorski SR (1984) Inositol phospholipid hydrolysis in rat cerebral cortical slices: I. Receptor characterisation. J Neurochem 42:1379–1387

    Article  PubMed  CAS  Google Scholar 

  • Cesana R, Ceci A, Ciprandi C, Borsini F (1993) Mesulergine antagonism towards the fluoxetine anti-immobility effect in the forced swimming test in mice. J Pharm Pharmacol 45:473–475

    PubMed  CAS  Google Scholar 

  • Choi MJ, Kang RH, Ham BJ, Jeong HY, Lee MS (2005) Serotonin receptor 2A gene polymorphism (−1438A/G) and short-term treatment response to citalopram. Neuropsychobiology 52:155–162

    Article  PubMed  CAS  Google Scholar 

  • Clenet F, De Vos A, Bourin M (2001) Involvement of 5-HT(2C) receptors in the anti-immobility effects of antidepressants in the forced swimming test in mice. Eur Neuropsychopharmacol 11:145–152

    Article  PubMed  CAS  Google Scholar 

  • Coderre TJ (1992) Contribution of protein kinase C to central sensitization and persistent pain following tissue injury. Neurosci Lett 140:181–184

    Article  Google Scholar 

  • Cohen ML, Kurz KD, Mason NR, Fuller RW, Marzoni GP, Garbrecht WL (1985) Pharmacological activity of the isomers of LY53857, potent and selective 5-HT2 receptor antagonists. J Pharmacol Exp Ther 235:319–323

    PubMed  CAS  Google Scholar 

  • Conn PJ, Sanders-Bush E (1986) Regulation of serotonin-stimulated phosphoinositide hydrolysis: relation to the serotonin 5-HT-2 binding site. J Neurosci 6:3669–3675

    PubMed  CAS  Google Scholar 

  • Cowen PJ (1990) A role for 5-HT in the action of antidepressant drugs. Pharmacol Ther 46:43–51

    Article  PubMed  CAS  Google Scholar 

  • Cowen PJ, Charig EM, Fraser S, Elliott JM (1987) Platelet 5-HT receptor binding during depressive illness and tricyclic antidepressant treatment. J Affect Disord 13:45–50

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Duman RS (2003) Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 38:157–160

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Lucki I (2000) Antidepressant-like behavioral effects mediated by 5-hydroxytryptamine(2C) receptors. J Pharmacol Exp Ther 295:1120–1126

    PubMed  CAS  Google Scholar 

  • Cusin C, Serretti A, Zanardi R, Lattuada E, Rossini D, Lilli R, Lorenzi C, Smeraldi E (2002) Influence of monoamine oxidase A and serotonin receptor 2A polymorphisms in SSRI antidepressant activity. Int J Neuropsychopharmacol 5:27–35

    Article  PubMed  CAS  Google Scholar 

  • D’Aquila PS, Collu M, Pani L, Gessa GL, Serra G (1994) Antidepressant-like effect of selective dopamine D1 receptor agonists in the behavioural despair animal model of depression. Eur J Pharmacol 262:107–111

    Article  PubMed  CAS  Google Scholar 

  • Delgado PL (2004) How antidepressants help depression: mechanisms of action and clinical response. J Clin Psychiatry 65:25–30

    PubMed  CAS  Google Scholar 

  • Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl) 121:66–72

    Article  CAS  Google Scholar 

  • Einat H, Clenet F, Shaldubina A, Belmaker RH, Bourin M (2001) The antidepressant activity of inositol in the forced swim test involves 5-HT(2) receptors. Behav Brain Res 118:77–83

    Article  PubMed  CAS  Google Scholar 

  • Engleman EA, Murphy JM, Zhou FC, Hingtgen JN (1992) Response suppression induced with selective 5-HT agonists can be differentially blocked with LY53857 in an animal model of depression. Neurochem Res 17:483–488

    Article  PubMed  CAS  Google Scholar 

  • Feighner JP (1999) Mechanism of action of antidepressant medications. J Clin Psychiatry 60:4–11

    Article  PubMed  CAS  Google Scholar 

  • Frazer A (2000) Norepinephrine involvement in antidepressant action. J Clin Psychiatry 61:25–30

    PubMed  CAS  Google Scholar 

  • Gambarana C, Ghiglieri O, Tagliamonte A, D’Alessandro N, De Montis MG (1995) Crucial role of D1 dopamine receptors in mediating the antidepressant effect of imipramine. Pharmacol Biochem Behav 50:147–151

    Article  PubMed  CAS  Google Scholar 

  • Golding EM, Vink R (1994) Inhibition of phospholipase C with neomycin improves metabolic and neurologic outcome following traumatic brain injury. Brain Res 668:46–53

    Article  PubMed  CAS  Google Scholar 

  • Gould TD, Manji HK (2002) Signaling networks in the pathophysiology and treatment of mood disorders. J Psychosom Res 53:687–697

    Article  PubMed  Google Scholar 

  • Gurevich I, Tamir H, Arango V, Dwork AJ, Mann JJ, Schmauss C (2002) Altered editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Neuron 34:349–356

    Article  PubMed  CAS  Google Scholar 

  • Harvey JA (2003) Role of the serotonin 5-HT(2A) receptor in learning. Learn Mem 10:355–362

    Article  PubMed  Google Scholar 

  • Hingtgen JN, Fuller RW, Mason NR, Aprison MH (1985) Blockade of a 5-hydroxytryptophan-induced animal model of depression with a potent and selective 5-HT2 receptor antagonist (LY53857). Biol Psychiatry 20:592–597

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Waeber C, Schoeffter P, Palacios JM, Dravid A (1989) 5-HT1C [5-HT2C] receptor-mediated stimulation of inositol phosphate production in pig choroid plexus. A pharmacological characterization. Naunyn Schmiedebergs Arch Pharmacol 339:252–258

    Article  PubMed  CAS  Google Scholar 

  • Hrdina PD, Demeter E, Vu TB, Sotonyi P, Palkovits M (1993) 5-HT uptake sites and 5-HT2 receptors in brain of antidepressant-free suicide victims/depressives: increase in 5-HT2 sites in cortex and amygdala. Brain Res 614:37–44

    Article  PubMed  CAS  Google Scholar 

  • Labarca R, Janowsky A, Paul SM (1985) Manganese stimulates incorporation of [3H]inositol into an agonist-insensitive pool of phosphatidylinositol in brain membranes. Biochem Biophys Res Commun 132:540–547

    Article  PubMed  CAS  Google Scholar 

  • Leysen JE (2004) 5-HT2 receptors. Curr Drug Targets CNS Neurol Disord 3:11–26

    Article  PubMed  CAS  Google Scholar 

  • Marek GJ, Martin-Ruiz R, Abo A, Artigas F (2005) The selective 5-HT2A receptor antagonist M100907 enhances antidepressant-like behavioral effects of the SSRI fluoxetine. Neuropsychopharmacology 30:2205–2215

    Article  PubMed  CAS  Google Scholar 

  • McKinney WT (1984) Animal models of depression: an overview. Psychiatr Dev 2:77–96

    PubMed  CAS  Google Scholar 

  • Messa C, Colombo C, Moresco RM, Gobbo C, Galli L, Lucignani G, Gilardi MC, Rizzo G, Smeraldi E, Zanardi R, Artigas F, Fazio F (2003) 5-HT(2A) receptor binding is reduced in drug-naive and unchanged in SSRI-responder depressed patients compared to healthy controls: a PET study. Psychopharmacology (Berl) 167:72–78

    CAS  Google Scholar 

  • Minov C, Baghai TC, Schule C, Zwanzger P, Schwarz MJ, Zill P, Rupprecht R, Bondy B (2001) Serotonin-2A-receptor and -transporter polymorphisms: lack of association in patients with major depression. Neurosci Lett 303:119–122

    Article  PubMed  CAS  Google Scholar 

  • Mintun MA, Sheline YI, Moerlein SM, Vlassenko AG, Huang Y, Snyder AZ (2004) Decreased hippocampal 5-HT2A receptor binding in major depressive disorder: in vivo measurement with [18F]altanserin positron emission tomography. Biol Psychiatry 55:217–224

    Article  PubMed  CAS  Google Scholar 

  • Navidi M, MacQuarrie RA, Sun GY (1990) Metabolism of phosphatidylinositol in plasma membranes and synaptosomes of rat cerebral cortex: a comparison between endogenous vs exogenous substrate pools. Lipids 25:273–277

    Article  PubMed  CAS  Google Scholar 

  • Nic Dhonnchadha BA, Ripoll N, Clenet F, Hascoet M, Bourin M (2005) Implication of 5-HT2 receptor subtypes in the mechanism of action of antidepressants in the four plates test. Psychopharmacology (Berl) 179:418–429

    Article  CAS  Google Scholar 

  • Ossowska G, Nowak G, Klenk-Majewska B, Danilczuk Z, Zebrowska-Lupina I (2002) Effect of imipramine on brain D-1 and 5-HT-2A receptors in a chronic unpredictable stress model in rats. Pol J Pharmacol 54:89–93

    PubMed  CAS  Google Scholar 

  • Pacheco MA, Stockmeier C, Meltzer HY, Overholser JC, Dilley GE, Jope RS (1996) Alterations in phosphoinositide signaling and G-protein levels in depressed suicide brain. Brain Res 723:37–45

    Article  PubMed  CAS  Google Scholar 

  • Pandey GN, Pandey SC, Janicak PG, Marks RC, Davis JM (1990) Platelet serotonin-2 receptor binding sites in depression and suicide. Biol Psychiatry 28:215–222

    Article  PubMed  CAS  Google Scholar 

  • Pandey GN, Pandey SC, Davis JM (1991a) Effect of desipramine on inositol phosphate formation and inositol phospholipids in rat brain and human platelets. Psychopharmacol Bull 27:255–261

    PubMed  CAS  Google Scholar 

  • Pandey SC, Davis JM, Schwertz DW, Pandey GN (1991b) Effect of antidepressants and neuroleptics on phosphoinositide metabolism in human platelets. J Pharmacol Exp Ther 256:1010–1018

    PubMed  CAS  Google Scholar 

  • Pauwels PJ (2000) Diverse signalling by 5-hydroxytryptamine (5-HT) receptors. Biochem Pharmacol 60:1743–1750

    Article  PubMed  CAS  Google Scholar 

  • Popoli M, Brunello N, Perez J, Racagni G (2000) Second messenger-regulated protein kinases in the brain: their functional role and the action of antidepressant drugs. J Neurochem 74:21–33

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  PubMed  CAS  Google Scholar 

  • Rosel P, Arranz B, Vallejo J, Alvarez P, Menchon JM, Palencia T, Navarro MA (1999) Altered [3H]imipramine and 5-HT2 but not [3H]paroxetine binding sites in platelets from depressed patients. J Affect Disord 52:225–233

    Article  PubMed  CAS  Google Scholar 

  • Rosel P, Arranz B, San L, Vallejo J, Crespo JM, Urretavizcaya M, Navarro MA (2000) Altered 5-HT(2A) binding sites and second messenger inositol trisphosphate (IP(3)) levels in hippocampus but not in frontal cortex from depressed suicide victims. Psychiatry Res 99:173–181

    Article  PubMed  CAS  Google Scholar 

  • Rosel P, Arranz B, Urretavizcaya M, Oros M, San L, Navarro MA (2004) Altered 5-HT2A and 5-HT4 postsynaptic receptors and their intracellular signalling systems IP3 and cAMP in brains from depressed violent suicide victims. Neuropsychobiology 49:189–195

    Article  PubMed  CAS  Google Scholar 

  • Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, Agerman K, Haapasalo A, Nawa H, Aloyz R, Ernfors P, Castren E (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 23:349–357

    PubMed  CAS  Google Scholar 

  • Schmauss C (2003) Serotonin 2C receptors: suicide, serotonin, and runaway RNA editing. Neuroscientist 9:237–242

    Article  PubMed  CAS  Google Scholar 

  • Serretti A, Artioli P, De Ronchi D (2004) The 5-HT2C receptor as a target for mood disorders. Expert Opin Ther Targets 8:15–23

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Kulkarni SK (1994) Dopamine receptor mediated antidepressant action of B-HT 920 in mice. Indian J Exp Biol 32:172–175

    PubMed  CAS  Google Scholar 

  • Sheline YI, Mintun MA, Barch DM, Wilkins C, Snyder AZ, Moerlein SM (2004) Decreased hippocampal 5-HT(2A) receptor binding in older depressed patients using [18F]altanserin positron emission tomography. Neuropsychopharmacology 29:2235–2241

    Article  PubMed  CAS  Google Scholar 

  • Sibille E, Sarnyai Z, Benjamin D, Gal J, Baker H, Toth M (1997) Antisense inhibition of 5-hydroxytryptamine2a receptor induces an antidepressant-like effect in mice. Mol Pharmacol 52:1056–1063

    PubMed  CAS  Google Scholar 

  • Strome EM, Jivan S, Doudet DJ (2005) Quantitative in vitro phosphor imaging using [3H] and [18F] radioligands: the effects of chronic desipramine treatment on serotonin 5-HT2 receptors. J Neurosci Methods 141:143–154

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto Y, Yamada S, Yamada J (2002) The 5-HT2 receptor antagonist reduces immobility of mice treated with the atypical antidepressant mianserin in the forced swimming test. Biol Pharm Bull 25:1479–1481

    Article  PubMed  CAS  Google Scholar 

  • Taylor C, Fricker AD, Devi LA, Gomes I (2005) Mechanisms of action of antidepressants: from neurotransmitter systems to signaling pathways. Cell Signal 17:549–557

    Article  PubMed  CAS  Google Scholar 

  • Tiraboschi E, Tardito D, Kasahara J, Moraschi S, Pruneri P, Gennarelli M, Racagni G, Popoli M (2004) Selective phosphorylation of nuclear CREB by fluoxetine is linked to activation of CaM kinase IV and MAP kinase cascades. Neuropsychopharmacology 29:1831–1840

    Article  PubMed  CAS  Google Scholar 

  • Todd KG, McManus DJ, Baker GB (1995) Chronic administration of the antidepressants phenelzine, desipramine, clomipramine, or maprotiline decreases binding to 5-hydroxytryptamine2A receptors without affecting benzodiazepine binding sites in rat brain. Cell Mol Neurobiol 15:361–370

    Article  PubMed  CAS  Google Scholar 

  • Tohda M, Watanabe H (1998) Enhancement of serotonin 2C receptor mRNA expression by antidepressants possessing the receptor-blocking activity in the rat brain. Jpn J Pharmacol 78:515–517

    Article  PubMed  CAS  Google Scholar 

  • Tyeryar KR, Undie AS (2003) Chemically diverse antidepressants regulate phosphoinositide-derived diacylglycerol formation in depression-relevant regions of the rat brain. FASEB J 17:244

    Google Scholar 

  • Undie AS (1999) Relationship between dopamine agonist stimulation of inositol phosphate formation and cytidine diphosphate–diacylglycerol accumulation in brain slices. Brain Res 816:286–294

    Article  PubMed  CAS  Google Scholar 

  • Undie AS, Friedman E (1990) Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain. J Pharmacol Exp Ther 253:987–992

    PubMed  CAS  Google Scholar 

  • Undie AS, Friedman E (1992) Selective dopaminergic mechanism of dopamine and SKF38393 stimulation of inositol phosphate formation in rat brain. Eur J Pharmacol 226:297–302

    Article  PubMed  CAS  Google Scholar 

  • Van Oekelen D, Luyten WH, Leysen JE (2003) 5-HT2A and 5-HT2C receptors and their atypical regulation properties. Life Sci 72:2429–2449

    Article  PubMed  CAS  Google Scholar 

  • West CH, Weiss JM (1998) Effects of antidepressant drugs on rats bred for low activity in the swim test. Pharmacol Biochem Behav 61:67–79

    Article  PubMed  CAS  Google Scholar 

  • Yamada J, Sugimoto Y (2001) Effects of 5-HT(2) receptor antagonists on the anti-immobility effects of imipramine in the forced swimming test with mice. Eur J Pharmacol 427:221–225

    Article  PubMed  CAS  Google Scholar 

  • Yamada J, Sugimoto Y (2002) Differential effects of the 5-HT2 receptor antagonist on the anti-immobility effects of noradrenaline and serotonin reuptake inhibitors in the forced swimming test. Brain Res 958:161–165

    Article  PubMed  CAS  Google Scholar 

  • Yates M, Leake A, Candy JM, Fairbairn AF, McKeith IG, Ferrier IN (1990) 5HT2 receptor changes in major depression. Biol Psychiatry 27:489–496

    Article  PubMed  CAS  Google Scholar 

  • Yau JL, Olsson T, Noble J, Seckl JR (1999) Serotonin receptor subtype gene expression in the hippocampus of aged rats following chronic amitriptyline treatment. Brain Res Mol Brain Res 70:282–287

    Article  PubMed  CAS  Google Scholar 

  • Zanardi R, Artigas F, Moresco R, Colombo C, Messa C, Gobbo C, Smeraldi E, Fazio F (2001) Increased 5-hydroxytryptamine-2 receptor binding in the frontal cortex of depressed patients responding to paroxetine treatment: a positron emission tomography scan study. J Clin Psychopharmacol 21:53–58

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant no. DA017614 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashiwel S. Undie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyeryar, K.R., Undie, A.S. Tandem regulation of phosphoinositide signaling and acute behavioral effects induced by antidepressant agents in rats. Psychopharmacology 193, 271–282 (2007). https://doi.org/10.1007/s00213-007-0784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0784-1

Keywords

Navigation