Skip to main content

Advertisement

Log in

A pharmaco-EEG study on antipsychotic drugs in healthy volunteers

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Both psychotropic drugs and mental disorders have typical signatures in quantitative electroencephalography (EEG). Previous studies found that some psychotropic drugs had EEG effects opposite to the EEG effects of the mental disorders treated with these drugs (key–lock principle).

Objectives

We performed a placebo-controlled pharmaco-EEG study on two conventional antipsychotics (chlorpromazine and haloperidol) and four atypical antipsychotics (olanzapine, perospirone, quetiapine, and risperidone) in healthy volunteers. We investigated differences between conventional and atypical drug effects and whether the drug effects were compatible with the key–lock principle.

Methods

Fourteen subjects underwent seven EEG recording sessions, one for each drug (dosage equivalent of 1 mg haloperidol). In a time-domain analysis, we quantified the EEG by identifying clusters of transiently stable EEG topographies (microstates). Frequency-domain analysis used absolute power across electrodes and the location of the center of gravity (centroid) of the spatial distribution of power in different frequency bands.

Results

Perospirone increased duration of a microstate class typically shortened in schizophrenics. Haloperidol increased mean microstate duration of all classes, increased alpha 1 and beta 1 power, and tended to shift the beta 1 centroid posterior. Quetiapine decreased alpha 1 power and shifted the centroid anterior in both alpha bands. Olanzapine shifted the centroid anterior in alpha 2 and beta 1.

Conclusions

The increased microstate duration under perospirone and haloperidol was opposite to effects previously reported in schizophrenic patients, suggesting a key–lock mechanism. The opposite centroid changes induced by olanzapine and quetiapine compared to haloperidol might characterize the difference between conventional and atypical antipsychotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Borbely AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14:557–568

    Article  PubMed  CAS  Google Scholar 

  • de Paulis T (2002) Perospirone (Sumitomo Pharmaceuticals). Curr Opin Investig Drugs 3:121–129

    PubMed  Google Scholar 

  • Dierks T, Strik WK, Maurer K (1995) Electrical brain activity in schizophrenia described by equivalent dipoles of FFT-data. Schizophr Res 14:145–154

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Nordstroem AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1- and D2- dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side effects. Arch Gen Psychiatry 49:538–544

    PubMed  CAS  Google Scholar 

  • Fink M (1968) EEG classification of psychoactive compounds in man: review and therapy of behavioral associations. In: Efron DH, Cole JO (eds) Psychopharmacology: a review of progress 1957–1967. US Government Printing Office, Washington, pp 497–507

    Google Scholar 

  • Galderisi S, Mucci A, Bucci P, Mignone ML, Maj M (1996) Multilead quantitative EEG profile of clozapine in resting and vigilance-controlled conditions. Psychiatry Res 67:113–122

    Article  PubMed  CAS  Google Scholar 

  • Hubl D, Kleinlogel H, Froelich L, Weinandi T, Maurer K, Holstein W, Czekalla J, Dierks T (2001) Multilead quantitative electroencephalogram profile and cognitive evoked potentials (P300) in healthy subjects after a single dose of olanzapine. Psychopharmacology 158:281–288

    Article  PubMed  CAS  Google Scholar 

  • Hughes JR, John ER (1999) Conventional and quantitative electroencephalography in psychiatry. J Neuropsychiatry Clin Neurosci 11:190–208

    PubMed  CAS  Google Scholar 

  • Isotani T, Tanaka H, Lehmann D, Pascual-Marqui RD, Kochi K, Saito N, Yagyu T, Kinoshita T, Sasada K (2001) Source localization of EEG activity during hypnotically induced anxiety and relaxation. Int J Psychophysiol 41:143–153

    Article  PubMed  CAS  Google Scholar 

  • Itil TM (1961) Electroencephalographische Befunde zur Klassifikation neuro- und thymoleptischer Medikamente. Med Exp 5:347–363

    Google Scholar 

  • Itil TM, Saletu B, Davis S (1972) EEG findings in chronic schizophrenics based on digital computer period analysis and analog power spectra. Biol Psychiatry 5:1–13

    PubMed  CAS  Google Scholar 

  • John ER, Ahn H, Prichep LS, Trepetin M, Brown D, Kaye H (1980) Developmental equations for the electroencephalogram. Science 210:1255–1258

    Article  PubMed  CAS  Google Scholar 

  • Kasper S, Tauscher J, Willeit M, Stamenkovic M, Neumeister A, Kuefferle B, Barnas C, Stastny J, Praschak-Rieder N, Pezawas L, de Zwaan M, Quiner S, Pirker W, Asenbaum S, Podreka I, Bruecke T (2002) Receptor and transporter imaging studies in schizophrenia, depression, bulimia and Tourette’s disorder: implications for psychopharmacology. World J Biol Psychiatry 3:133–146

    Article  PubMed  Google Scholar 

  • Kato T, Hirose A, Ohno Y, Shimuzu H, Tanaka H, Nakamura M (1990) Binding profile of SM-9018, a novel antipsychotic candidate. Jpn J Pharmacol 54:478–481

    Article  PubMed  CAS  Google Scholar 

  • Koenig T, Lehmann D, Merlo MCG, Kochi K, Hell D, Koukkou M (1999) A deviant EEG brain microstate in acute, neuroleptic-naïve schizophrenics at rest. Eur Arch Psychiatry Clin Neurosci 249:205–211

    Article  PubMed  CAS  Google Scholar 

  • Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond and millisecond, year by year: normative EEG microstates and developmental stages. NeuroImage 16:41–48

    Article  PubMed  Google Scholar 

  • Kubicki S, Herrmann WM, Fichte K, Freund G (1979) Reflections on the topics: EEG frequency bands and regulation of vigilance. Pharmakopsychiatr Neuropsychopharmakol 12:237–245

    PubMed  CAS  Google Scholar 

  • Lehmann D, Michel CM (1989) Intracerebral dipole sources of EEG FFT power maps. Brain Topogr Fall–Winter 2:155–164 (erratum in: Brain Topogr 1990 Summer 2:311)

    Article  CAS  Google Scholar 

  • Lehmann D and Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48:609–621

    Article  PubMed  CAS  Google Scholar 

  • Lehmann D, Ozaki H, Pal I (1987) EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 67:271–288

    Article  PubMed  CAS  Google Scholar 

  • Lehmann D, Faber PL, Galderisi S, Hermann WM, Kinoshita T, Koukkou M, Mucci A, Pascual-Marqui RD, Saito N, Wackermann J, Winterer G, Koenig T (2005) EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study. Psychiatry Res 138:141–156

    Article  PubMed  Google Scholar 

  • Manly BFJ (1991) Randomization and Monte Carlo methods in biology. Chapman and Hall, London

    Google Scholar 

  • Mucci A, Volpe U, Merlotti E, Bucci P, Galderisi S (2006) Pharmaco-EEG in psychiatry. Clin EEG Neurosci 37:81–98

    PubMed  Google Scholar 

  • Mueller TJ, Koenig T, Wackermann J, Kalus P, Fallgatter A, Strik WK, Lehmann D (2005) Subsecond changes of global brain state in illusory multistable motion perception. J Neural Transm 112:565–576

    Article  Google Scholar 

  • Ozaki H, Lehmann D (2000) EEG reconsidered: from neuroelectric signals to human conscious experience. Jpn J Clin Neurophysiol 28:15–17

    Google Scholar 

  • Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42:658–665

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Marqui RD, Lehmann D, Koenig T (1999) Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Res 30:169–179

    Google Scholar 

  • Saito M, Kagono Y, Suitsu N, Yamamoto Y, Kinoshita T, Ohya D, Fukui Y, Hashimoto C (1983) A study on anti-psychotic drugs by the aid of quantitative EEG and multivariate analysis–doses and action trait of haloperidol. Jpn J Neuropsychopharmacol 5:843–856

    Google Scholar 

  • Saito N, Okajima Y, Isotani T, Yagyu T, Nobuhara K, Nishimura T, Fukushima M, Kuginuki T, Kinoshita T, Saito M (1993) Early prediction and orientation of the clinical effects of a new antipsychotic compound, risperidone, in human: a quantitative pharmaco-EEG study. Jpn J Neuropsychopharmacol 15:693–703

    Google Scholar 

  • Saito A, Kuginuki T, Fukushima M, Saito M (1998) Pharmaco-EEG study of perospirone, a D2 and 5-HT2 antagonist, in healthy male volunteers. Jpn J EEG EMG 26:205–215

    Google Scholar 

  • Saletu B (1980) Central measures in schizophrenia. In: Van Praag HM, Lader MH, Rafaelsen OJ, Sachar EJ (eds) Handbook of biological psychiatry part II. Brain mechanisms and abnormal behavior—psychophysiology. Marcel Dekker, New York, pp 97–144

    Google Scholar 

  • Saletu B (1987) The use of pharmaco-EEG in drug profiling. In: Hindmarch I, Stonier PD (eds) Human psychopharmacology: measures and methods, vol 1. Wiley, Chichester, pp 172–200

    Google Scholar 

  • Saletu B, Kuefferle B, Gruenberger J, Anderer P (1986) Quantitative EEG, SPEM, and psychometric studies in schizophrenics before and during differential neuroleptic therapy. Pharmacopsychiatry 19:434–437

    Article  PubMed  CAS  Google Scholar 

  • Saletu B, Anderer P, Kinsperger K, Gruenberger J (1987) Topographic brain mapping of EEG in neuropsychopharmacology: part II. Clinical applications (pharmaco EEG imaging). Methods Find Exp Clin Pharmacol 9:385–408

    PubMed  CAS  Google Scholar 

  • Saletu B, Anderer P, Saletu-Zyhlarz GM, Pascual-Marqui RD (2002) EEG topography and tomography in diagnosis and treatment of mental disorders: evidence for a key–lock principle. Methods Find Exp Clin Pharmacol 24(Suppl D):97–106

    CAS  Google Scholar 

  • Saletu-Zyhlarz GM, Anderer P, Berger P, Gruber G, Oberndorfer S, Saletu B (2000) Nonorganic insomnia in panic disorder: comparative sleep laboratory studies with normal controls and placebo-controlled trials with alprazolam. Hum Psychopharmacol 15:241–254

    Article  PubMed  CAS  Google Scholar 

  • Shiwa T, Amano T, Matsubayashi H, Seki T, Sasa M, Sakai N (2003) Perospirone, a novel antipsychotic agent, hyperpolarizes rat dorsal raphe neurons via 5-HT1A receptor. J Pharmacol Sci 93:114–117

    Article  PubMed  CAS  Google Scholar 

  • Stahl SM (2000) Antypsychotic agents. In: Essential psychopharmacology: neuroscientific basis and practical applications, 2nd edn. Cambridge University Press, Cambridge, pp 401–458

    Google Scholar 

  • Strelets V, Faber PL, Golikova J, Novototsky-Vlasov V, Koenig T, Gianotti LRR, Gruzelier JH, Lehmann D (2003) Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations. Clin Neurophysiol 114:2043–2051

    Article  PubMed  CAS  Google Scholar 

  • Strik WK, Lehmann D (1993) Data-determined window size and space-oriented segmentation of spontaneous EEG map series. Electroencephalogr Clin Neurophysiol 87:169–174

    Article  PubMed  CAS  Google Scholar 

  • Strik WK, Fallgatter AJ, Brandeis D, Pascual-Marqui RD (1998) Three-dimensional tomography of event-related potentials during response inhibition: evidence for phasic frontal lobe activation. Electroencephalogr Clin Neurophysiol 108:406–413

    Article  PubMed  CAS  Google Scholar 

  • Wackermann J, Lehmann D, Michel CM, Strik WK (1993) Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. Int J Psychophysiol 14:269–283

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the pharmacists of the Kansai Medical University Hospital’s Pharmacy for the preparation of the test drugs and the colleagues of Department of Neuropsychiatry, Kansai Medical University for their help with the EEG recordings. This study complied with the current Japanese Pharmaceutical Affairs Laws. This study was supported by grants from the Mitsubishi Pharma Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Yoshimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimura, M., Koenig, T., Irisawa, S. et al. A pharmaco-EEG study on antipsychotic drugs in healthy volunteers. Psychopharmacology 191, 995–1004 (2007). https://doi.org/10.1007/s00213-007-0737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0737-8

Keywords

Navigation