, Volume 191, Issue 3, pp 813–822 | Cite as

Linking nucleus accumbens dopamine and blood oxygenation

  • Brian KnutsonEmail author
  • Sasha E. B. Gibbs



Animal research suggests that anticipation of reward can elicit dopamine release in the nucleus accumbens (NAcc). Human functional magnetic resonance imaging (FMRI) research further suggests that reward anticipation can increase local blood oxygen level dependent (BOLD) signal in the NAcc. However, the physiological relationship between dopamine release and BOLD signal increases in the NAcc has not yet been established.


This review considers pharmacological MRI (phMRI) evidence for a directional relationship between NAcc dopamine release and BOLD signal, as well as implications for human psychopathological symptoms.


Accumulating phMRI evidence supports a simple model in which NAcc dopamine release activates postsynaptic D1 receptors, which changes postsynaptic membrane potential, eventually increasing local BOLD signal. This continuing influence can change on a second-to-second basis.


Dopamine release in the NAcc appears to increase local BOLD signal via agonism of postsynaptic D1 receptors. Such a physiological mechanism implies that FMRI may be used to track symptoms related to NAcc dopaminergic dysregulation in psychiatric disorders including schizophrenia and attention deficit/hyperactivity disorder.


Accumbens Striatum Dopamine Reward Oxygenation BOLD FMRI phMRI Schizophrenia Hyperactivity 



We thank G. Elliott Wimmer, Peter Shizgal, and three anonymous reviewers for helpful comments on prior drafts of the manuscript. During manuscript preparation, BK was supported by NIDA grant DA020615-01.


  1. Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155:761–767PubMedGoogle Scholar
  2. Aguirre GK, Zarahn E, D’Esposito M (1998) The variability of human, BOLD hemodynamic responses. NeuroImage 8:360–369PubMedCrossRefGoogle Scholar
  3. Astrup J, Heuser D, Lassen NA, Nilsson B, Norberg K, Siesjo BK (1978) Evidence against H+ and K+ as main factors for the control of cerebral blood flow: a microelectrode study. Ciba Foundation Symposium, pp 313–337Google Scholar
  4. Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625PubMedCrossRefGoogle Scholar
  5. Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611PubMedCrossRefGoogle Scholar
  6. Chen YI, Galpern WR, Brownell AL, Matthews RT, Bogdanov M, Isacson O, Keltner JR, Beal MF, Rosen BR, Jenkins BG (1997) Detection of dopaminergic neurotransmitter activity using phMRI: correlation with PET, microdialysis, and behavioral data. Magn Reson Med 38:389–398PubMedGoogle Scholar
  7. Chen YI, Brownell AL, Galpern W, Isacson O, Bogdanov M, Beal MF, Livni E, Rosen BR, Jenkins BG (1999) Detection of dopaminergic cell loss and neural transplantation using pharmacological MRI, PET and behavioral assessment. NeuroReport 10:2881–2886PubMedCrossRefGoogle Scholar
  8. Chen YC, Choi JK, Anderson SL, Rosen BR, Jenkins BG (2005) Mapping dopamine D2/D3 receptor function using pharmacological magnetic resonance imaging. Psychopharmacology 180:704–715Google Scholar
  9. Choi JK, Chen YI, Hamel E, Jenkins BG (2006) Brain hemodynamic changes mediated by dopamine receptors: Role of the cerebral microvasculature in dopamine-mediated neurovascular coupling. NeuroImage 30:700–712PubMedCrossRefGoogle Scholar
  10. Chuhma N, Zhang H, Masson J, Zhuang X, Sulzer D, Hen R, Rayport S (2004) Dopamine neurons mediate a fast excitatory signal via their glutamatergic synapses. J Neurosci 24:972–981PubMedCrossRefGoogle Scholar
  11. Cools R, Robbins TW (2004) Chemistry of the adaptive mind. Philos Trans R Soc Lond 362:2871–2888CrossRefGoogle Scholar
  12. Cooper JR, Bloom FE, Roth RH (2003) The biochemical basis of neuropharmacology, 8th edn. Oxford University Press, OxfordGoogle Scholar
  13. Cragg SJ, Rice ME (2004) DAncing past the DAT at a DA synapse. Trends Neurosci 27:270–277PubMedCrossRefGoogle Scholar
  14. Dixon AL, Prior M, Morris PM, Shah YB, Joseph MH, Young AM (2005) Dopamine antagonist modulation of amphetamine response as detected using pharmacological MRI. Neuropharmacology 48:236–245PubMedCrossRefGoogle Scholar
  15. Edvinsson L, McCulloch J, Sharkey J (1985) Vasomotor responses of cerebral arterioles in situ to putative dopamine receptor agonists. Br J Pharmacol 85:403–410PubMedGoogle Scholar
  16. Falck B, Hillarp NA (1959) On the cellular localization of catechol amines in the brain. Acta Anat 38:277–279PubMedCrossRefGoogle Scholar
  17. Febo M, Segarra AC, Tenney JR, Brevard ME, Duong TQ, Ferris CF (2004) Imaging cocaine-induced changes in the mesocorticolimbic dopaminergic system of conscious rats. J Neurosci Methods 139:167–176PubMedCrossRefGoogle Scholar
  18. Ferris CF, Snowdon CT, King JA, Sullivan JMJ, Ziegler Te, Olson DP, Schultz-Darken NJ, Tannenbaum PL, Ludwig R, Wu Z, Einspanier A, Vaughan JT, Duong TQ (2004) Activation of neural pathways associated with sexual arousal in non-human primates. J Magn Reson Imaging 19:168–174PubMedCrossRefGoogle Scholar
  19. Garris PA, Ciolkowski EL, Pastore P, Wightman RM (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14:6084–6093PubMedGoogle Scholar
  20. Gerfen CR, Wilson CJ (1996) The basal ganglia. In: Bjorklund A, Hokfelt T (eds) Handbook of chemical neuroanatomy. Elsevier Science, London, UK, pp 371–468Google Scholar
  21. Gonon F (1997) Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J Neurosci 17:5972–5978PubMedGoogle Scholar
  22. Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24PubMedCrossRefGoogle Scholar
  23. Jenkins BG, Sanchez-Pernaute R, Brownell AL, Chen YC, Isacson O (2004) Mapping dopamine function in primates using pharmacological magnetic resonance imaging. J Neurosci 24:9553–9560PubMedCrossRefGoogle Scholar
  24. Juckel G, Schlagenhauf F, Koslowski M, Filonov D, Wustenberg T, Villringer A, Knutson B, Kienast T, Gallinat J, Wrase J, Heinz A (2006a) Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical but not atypical neuroleptics. Psychopharmacology 187:222–228PubMedCrossRefGoogle Scholar
  25. Juckel G, Schlagenhauf F, Koslowski M, Wustenberg T, Villringer A, Knutson B, Wrase J, Heinz A (2006b) Dysfunction of ventral striatal reward prediction in schizophrenia. NeuroImage 29:409–416PubMedCrossRefGoogle Scholar
  26. Knutson B, Cooper JC (2005) Functional magnetic resonance imaging of reward prediction. Curr Opin Neurol 18:411–417PubMedCrossRefGoogle Scholar
  27. Knutson B, Adams CM, Fong GW, Hommer D (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21:RC159PubMedGoogle Scholar
  28. Knutson B, Fong GW, Bennett SM, Adams CM, Hommer D (2003) A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related FMRI. NeuroImage 18:263–272PubMedCrossRefGoogle Scholar
  29. Knutson B, Bjork JM, Fong GW, Hommer D, Mattay VS, Weinberger DR (2004) Amphetamine modulates human incentive processing. Neuron 43:261–269PubMedCrossRefGoogle Scholar
  30. Kufahl PR, Li Z, Risinger RC, Rainey CJ, Wu G, Bloom AS, Li S-J (2005) Neural responses to acute cocaine administration in the human brain detected by fMRI. NeuroImage 28:904–914PubMedCrossRefGoogle Scholar
  31. Lavin A, Nogueira L, Lapish CC, Wightman RM, Phillips PE, Seamans JK (2005) Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J Neurosci 25:5013–5023PubMedCrossRefGoogle Scholar
  32. Leyton M, Dagher A, Boileau I, Casey K, Baker GB, Diksic M, Gunn R, Young SN, Benkelfat C (2004) Decreasing amphetamine-induced dopamine release by acute phenylalanine/tyrosine depletion: A PET/[11C]Raclopride study in healthy men. Neuropsychopharmacology 29:427–432PubMedGoogle Scholar
  33. Lindauer U, Megow D, Matsuda H, Dirnagl U (1999) Nitric oxide: a modulator, but not a mediator of neurovascular coupling in rat somatosensory cortex. Am J Physiol 277:H799–H811PubMedGoogle Scholar
  34. Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769PubMedCrossRefGoogle Scholar
  35. Luo F, Wu G, Li Z, Li S-J (2003) Characterization of effects of mean arterial blood pressure induced by cocaine and cocaine methiodide on BOLD signals in rat brain. Magn Reson Med 49:264–270PubMedCrossRefGoogle Scholar
  36. Mandeville JB, Jenkins BG, Kosofsky BE, Moskowitz MA, Rosen BR, Marota JJ (2001) Regional sensitivity of BOLD and CBV changes during stimulation of rat brain. Magn Reson Med 45:443–447PubMedCrossRefGoogle Scholar
  37. Marota JJ, Mandeville JB, Weisskoff RM, Moskowitz MA, Rosen BR, Kosofsky BE (2000) Cocaine activation discriminates dopaminergic projections by temporal response: an FMRI study in rat. NeuroImage 11:13–23PubMedCrossRefGoogle Scholar
  38. McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101:129–152PubMedCrossRefGoogle Scholar
  39. Milner PM (1989) The discovery of self-stimulation and other stories. Neurosci Biobehav Rev 13:61–67PubMedCrossRefGoogle Scholar
  40. Montague PR, McClure SM, Baldwin PR, Phillips PEM, Budygin EA, Stuber GD, Kilpatrick MR, Wightman RM (2004) Dynamic gain control of dopamine delivery in freely moving animals. J Neurosci 24:1754–1759PubMedCrossRefGoogle Scholar
  41. Nguyen TV, Brownell AL, Chen YC, Livni E, Coyle JT, Rosen BR, Cavagna F, Jenkins BG (2000) Detection of the effects of dopamine receptor supersensitivity using pharmacological MRI and correlations with PET. Synapse 36:57–65PubMedCrossRefGoogle Scholar
  42. O’Doherty JP (2004) Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol 14:769–776PubMedCrossRefGoogle Scholar
  43. Olds ME, Fobes JL (1981) The central basis of motivation: intracranial self-stimulation studies. Annu Rev Psychol 32:523–574PubMedCrossRefGoogle Scholar
  44. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427PubMedCrossRefGoogle Scholar
  45. Roitman MF, Stuber GD, Phillips PEM, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265–1271PubMedCrossRefGoogle Scholar
  46. Rosa-Neto P, Lou HC, Cumming P, Pryds O, Karrebaek H, Lunding J, Gjedde A (2005) Methylphenidate-evoked changes in striatal dopamine correlate with inattention and impulsivity in adolescents with attention deficit hyperactivity disorder. NeuroImage 25:868–876PubMedCrossRefGoogle Scholar
  47. Scheres A, Milham MP, Knutson B, Castellanos FX (2006) Ventral striatal hyporesponsiveness during reward anticipation in attention deficit/hyperactivity disorder. Biol Psychiatry (in press). DOI  10.1016/j.biopsych.2006.04.042
  48. Schmitz Y, Lee CJ, Schmauss C, Gonon F, Sulzer D (2001) Amphetamine distorts stimulation-dependent dopamine overflow: effects on D2 autoreceptors, transporters, and synaptic vesicle stores. J Neurosci 21:5916–5924PubMedGoogle Scholar
  49. Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263PubMedCrossRefGoogle Scholar
  50. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599PubMedCrossRefGoogle Scholar
  51. Schwarz A, Gozzi A, Reese T, Bertain S, Crestan V, Hagan J, Heidbreder C, Bifone A (2004a) Selective dopamine D(3) receptor antagonist SB-277011-A potentiates phMRI response to acute amphetamine challenge in the rat brain. Synapse 54:1–10PubMedCrossRefGoogle Scholar
  52. Schwarz AJ, Zocchi A, Reese T, Gozzi M, Varnier G, Curcuruto O, Sartori I, Girlanda E, Biscaro B, Crestan V, Bertani S, Heidbreder C, Bifone A (2004b) Concurrent pharmacological MRI and in situ microdialysis of cocaine reveal a complex relationship between the central hemodynamic response and local dopamine concentration. NeuroImage 23:296–304PubMedCrossRefGoogle Scholar
  53. Shizgal P (1997) Neural basis of utility estimation. Curr Opin Neurobiol 7:198–208PubMedCrossRefGoogle Scholar
  54. Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577PubMedCrossRefGoogle Scholar
  55. Steward CA, Marsden CD, Prior MJW, Morris PG, Shah YB (2005) Methodological considerations in rat brain BOLD contrast pharmacological MRI. Psychopharmacology 180:687–704PubMedCrossRefGoogle Scholar
  56. Vollm BA, de Araujo IE, Cowen PJ, Rolls ET, Kringelbach ML, Smith KA, Jezzard P, Heal RJ, Matthews PM (2004) Methamphetamine activates reward circuitry in drug naive human subjects. Neuropsychopharmacology 29:1715–1722PubMedCrossRefGoogle Scholar
  57. Watson D, Tellegen A (1985) Toward a consensual structure of mood. Psychol Bull 98:219–235PubMedCrossRefGoogle Scholar
  58. West AR, Floresco SB, Charara A, Rosenkranz JA, Grace AA (2003) Electrophysiological interactions between striatal glutamatergic and dopaminergic systems. Ann NY Acad Sci 1003:53–74PubMedCrossRefGoogle Scholar
  59. Westerink BHC (1995) Brain microdialysis and its application for the study of animal behaviour. Behav Brain Res 70:103–124PubMedCrossRefGoogle Scholar
  60. Wightman RM, Robinson DL (2002) Transient changes in mesolimbic dopamine and their association with ‘reward’. J Neurochem 82:721–735PubMedCrossRefGoogle Scholar
  61. Wightman RM, Amatore C, Engstrom RC, Hale PD, Kristensen EW, Kuhr WG, May LJ (1988) Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience 25:513–523PubMedCrossRefGoogle Scholar
  62. Wise RA, Rompre PP (1989) Brain, dopamine, and reward. Annu Rev Psychol 40:191–225PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of PsychologyStanford UniversityStanfordUSA
  2. 2.Helen Wills Neuroscience InstituteUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations