Skip to main content
Log in

Effects of d-amphetamine and DOI (2,5-dimethoxy-4-iodoamphetamine) on timing behavior: interaction between D1 and 5-HT2A receptors

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The dopamine-releasing agent d-amphetamine and the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) have similar effects on free-operant timing behavior. The selective D1 dopamine receptor antagonist 8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol (SKF-83566), but not the D2 dopamine receptor antagonist haloperidol, can antagonize the effect of d-amphetamine, and the selective 5-HT2A receptor antagonist (±)2,3-dimethoxyphenyl-1-(2-(4-piperidine)-methanol (MDL-100907) can antagonize the effect of DOI. However, it is not known whether the effect of d-amphetamine can be reversed by MDL-100907 and the effect of DOI by dopamine receptor antagonists.

Objective

The objective of this work is to examine the interactions of d-amphetamine and DOI with MDL-100907, SKF-83566, and haloperidol on timing performance.

Materials and methods

Rats (n = 12–15 per experiment) were trained under the free-operant psychophysical procedure to press two levers (A and B) in 50-s trials in which reinforcement was provided intermittently for responding on A in the first half, and B in the second half of the trial. Percent responding on B (%B) was recorded in successive 5-s epochs of the trials; logistic functions were fitted to the data from each rat for the derivation of timing indices [T 50 (time corresponding to %B = 50); Weber fraction]. Rats were treated systemically with d-amphetamine or DOI, alone and in combination with haloperidol, SKF-83566, or MDL-100907.

Results

d-Amphetamine (0.4 mg kg−1) reduced T50 compared to vehicle; this effect was antagonized by SKF-83566 (0.03 mg kg−1) and MDL-100907 (0.5 mg kg−1), but not by haloperidol (0.05, 0.1 mg kg−1). DOI (0.25 mg kg−1) also reduced T50; this effect was reversed by MDL-100907 (0.5 mg kg−1), but not by SKF-83566 (0.03 mg kg−1) or haloperidol (0.05 mg kg−1).

Conclusions

The results suggest that both 5-HT2A and D1 receptors, but not D2 receptors, are involved in d-amphetamine’s effect on timing behavior in the free-operant psychophysical procedure. DOI’s effect on timing is mediated by 5-HT2A receptors, but neither D1 nor D2 receptors are involved in this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Most drugs acting at D1 dopamine receptors do not discriminate between D1 and D5 dopamine receptors and are, therefore, more precisely designated as D1-like receptor agonists and antagonists. Similarly, most drugs acting at D2 receptors do not discriminate between D2, D3, and D4 receptors and are, therefore, designated as D2-like receptor agonists and antagonists (Seeman and van Tol 1994; Strange 2001). Throughout this paper, for the sake of simplicity, they are referred to as D1 and D2 receptor agonists and antagonists.

References

  • Alexander M, Rothman RB, Baumann MH, Endres CJ, Brasic JR, Wong DF (2005) Noradrenergic and dopaminergic effects of (+)-amphetamine-like stimulants in the baboon Papio anubis. Synapse 56:94–99

    Article  PubMed  CAS  Google Scholar 

  • Al-Zahrani SSA, Ho M-Y, Velazquez Martinez DN, Lopez Cabrera M, Bradshaw CM, Szabadi E (1996) Effect of destruction of the 5-hydroxytryptaminergic pathways on behavioural timing and “switching” in a free-operant psychophysical procedure. Psychopharmacology (Berl) 127:346–352

    Article  CAS  Google Scholar 

  • Asgari K, Body S, Bak VK, Zhang Z, Rickard JF, Glennon JC, Fone KCF, Bradshaw CM, Szabadi E (2006) Effects of 5-HT2A receptor stimulation on the discrimination of durations by rats. Behav Pharmacol 17:51–59

    Article  PubMed  CAS  Google Scholar 

  • Bizo LA, White KG (1994a) The behavioral theory of timing: reinforcer rate determines pacemaker rate. J Exp Anal Behav 61:19–33

    Article  PubMed  CAS  Google Scholar 

  • Bizo LA, White KG (1994b) Pacemaker rate and the behavioral theory of timing. J Exp Psychol Anim Behav Proc 20:308–321

    Article  Google Scholar 

  • Body S, Kheramin S, Ho M-Y, Miranda F, Bradshaw CM, Szabadi E (2003) Effects of a 5-HT2 receptor agonist DOI (2,5-dimethoxy-4-iodoamphetamine), and antagonist, ketanserin, on the performance of rats on a free-operant timing schedule. Behav Pharmacol 14:599–607

    Article  PubMed  CAS  Google Scholar 

  • Body S, Kheramin S, Ho M-Y, Miranda Herrera F, Bradshaw CM, Szabadi E (2004) Effects of fenfluramine on free-operant timing behaviour: evidence for involvement of 5-HT2A receptors. Psychopharmacology (Berl) 176:154–156

    Article  CAS  Google Scholar 

  • Body S, Asgari K, Cheung THC, Bezzina G, Fone KCF, Glennon JC, Bradshaw CM, Szabadi E (2006) Evidence that the effect of 5-HT2 receptor stimulation on temporal differentiation is not mediated by receptors in the dorsal striatum. Behav Processes 71:258–267

    Article  PubMed  CAS  Google Scholar 

  • Bonaccorso MD, Meltzer HY, Li Z, Dai J, Alboszta AR, Ichikawa J (2002) SR46349B, a 5-HT2A/2C receptor antagonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Neuropsychopharmacology 27:430–441

    Article  PubMed  CAS  Google Scholar 

  • Broderick PA, Olabisi OA, Rahni DN, Zhou Y (2004) Cocaine acts on accumbens monoamines and locomotor behavior via a 5-HT2A/2C receptor mechanism as shown by ketanserin: 24-h follow-up studies. Prog Neuropsychopharmacol Biol Psychiatry 28:547–557

    Article  PubMed  CAS  Google Scholar 

  • Buhusi CV, Meck WH (2002) Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behav Neurosci 116:291–297

    Article  PubMed  CAS  Google Scholar 

  • Catania AC, Reynolds GS (1968) A quantitative analysis of the responding maintained by interval schedules of reinforcement. J Exp Anal Behav 11(Suppl):327–383

    Article  PubMed  Google Scholar 

  • Cheung THC, Bezzina G, Asgari K, Body S, Fone KCF, Bradshaw CM, Szabadi E (2006) Evidence for a role of D1 dopamine receptors in the effect of d-amphetamine on temporal differentiation performance in the free-operant psychophysical procedure. Psychopharmacology (Berl) 185:378–388

    Article  CAS  Google Scholar 

  • Chiang T-J, Al-Ruwaitea ASA, Ho M-Y, Bradshaw CM, Szabadi E (1998) The influence of ‘switching’ on the psychometric function in the free-operant psychophysical procedure. Behav Processes 44:197–209

    Article  Google Scholar 

  • Chiang T-J, Al-Ruwaitea ASA, Ho M-Y, Bradshaw CM, Szabadi E (1999) Effect of central 5-hydroxytryptamine depletion on performance in the free-operant psychophysical procedure: facilitation of switching, but no effect on temporal differentiation of responding. Psychopharmacology (Berl) 143:166–173

    Article  CAS  Google Scholar 

  • Chiang T-J, Al-Ruwaitea ASA, Mobini S, Ho M-Y, Bradshaw CM, Szabadi E (2000a) The effect of d-amphetamine on performance on two operant timing schedules. Psychopharmacology (Berl) 150:170–184

    Article  CAS  Google Scholar 

  • Chiang T-J, Al-Ruwaitea ASA, Mobini S, Ho M-Y, Bradshaw CM, Szabadi E (2000b) Effects of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) on performance on two operant timing schedules. Psychopharmacology (Berl) 151:379–391

    Article  CAS  Google Scholar 

  • De Deurwaerdere P, Spampinato U (1999) Role of serotonin2A and serotonin2B/2C receptor subtypes in the control of accumbal and striatal dopamine release elicited in vivo by dorsal raphe nucleus electrical stimulation. J Neurochem 73:1033–1042

    Article  PubMed  Google Scholar 

  • Devaud LL, Hollingsworth EB, Cooper BR (1992) Alterations in extracellular and tissue levels of biogenic amines in rat brain induced by the serotonin-2 receptor antagonist, ritanserin. J Neurochem 59:1459–1466

    Article  PubMed  CAS  Google Scholar 

  • Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E (1998) Selective blockade of serotonin2C/2B receptors enhances dopamine release in the rat nucleus accumbens. Neuropharmacology 37:265–272

    Article  PubMed  Google Scholar 

  • Doherty MD, Pickel VM (2000) Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res 864:176–185

    Article  PubMed  CAS  Google Scholar 

  • Ennis C, Kemp JD, Cox B (1981) Characterization of inhibitory 5–hydroxytryptamine receptors that modulate dopamine release in the striatum. J Neurochem 36:1515–1520

    Article  PubMed  CAS  Google Scholar 

  • Gibbon J, Malapani C, Dale CL, Gallistel C (1997) Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol 7:170–184

    Article  PubMed  CAS  Google Scholar 

  • Gobert A, Millan MJ (1999) Serotonin (5-HT)2A receptor activation enhances dialysate levels of dopamine and noradrenaline, but not 5-HT, in the frontal cortex of freely-moving rats. Neuropharmacology 38:315–317

    Article  PubMed  CAS  Google Scholar 

  • Gudelsky GA, Yamamoto BK, Nash JF (1994) Potentiation of 3,4-methylenedioxymethamphetamine-induced dopamine release and serotonin neurotoxicity by 5-HT2 receptor agonists. Eur J Pharmacol 264:325–330

    Article  PubMed  CAS  Google Scholar 

  • Herrera FM, Velazquez Martinez DN (1997) Discriminative stimulus properties of amphetamine in a conditioned taste aversion paradigm. Behav Pharmacol 8:458–464

    Article  PubMed  CAS  Google Scholar 

  • Hinton SC, Meck WH (1997) How time flies: functional and neural mechanisms of interval timing. In: Bradshaw CM, Szabadi E (eds) Time and behaviour: psychological and neurobehavioural analyses. Elsevier, Amsterdam

    Google Scholar 

  • Ho M-Y, Velazquez-Martinez DN, Bradshaw CM, Szabadi E (2002) 5-Hydroxytryptamine and interval timing behaviour. Pharmacol Biochem Behav 71:773–785

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa J, Meltzer HY (1995) DOI, a 5-HT2A/2C receptor agonist, potentiates amphetamine-induced dopamine release in rat striatum. Brain Res 698:204–208

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, Meltzer HY (2001) 5-HT2A and D2 receptor blockade increases cortical DA release via 5-HT1A receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76:1521–1531

    Article  PubMed  CAS  Google Scholar 

  • Johnson MP, Siegel BW, Carr AA (1996) [H+]MDL 100,907: a novel selective 5-HT2A receptor ligand. Naunyn Schmiedebergs Arch Pharmacol 354:205–209

    Article  PubMed  CAS  Google Scholar 

  • Kehne JH, Baron BM, Carr AA, Chaney SF, Elands J, Feldman DJ, Frank RA, van Giersbergen PL, McCloskey TC, Johnson MP, McCarty DR, Poirot M, Senyah Y, Siegel BW, Widmaier C (1996) Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT2A antagonist with a favourable CNS safety profile. J Pharmacol Exp Ther 277:968–981

    PubMed  CAS  Google Scholar 

  • Killeen PR, Fetterman JG (1988) A behavioral theory of timing. Psychol Rev 95:274–295

    Article  PubMed  CAS  Google Scholar 

  • Killeen PR, Fetterman JG, Bizo LA (1997) Time’s causes. In: Bradshaw CM, Szabadi E (eds) Time and behaviour: psychological and neurobehavioural analyses. Elsevier, Amsterdam

    Google Scholar 

  • Kuroki T, Meltzer HY, Ichikawa J (2003) 5-HT2A receptor stimulation by DOI, a 5-HT2A/2C receptor agonist, potentiates amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res 972:216–221

    Article  PubMed  CAS  Google Scholar 

  • Liegeois J-F, Ichikawa J, Meltzer HY (2002) 5-HT2A receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Res 947:157–165

    Article  PubMed  CAS  Google Scholar 

  • Lucas G, Spampinato U (2000) Role of striatal serotonin2A and serotonin2C receptor subtypes in the control of in vivo dopamine outflow in the rat striatum. J Neurochem 74:693–701

    Article  PubMed  CAS  Google Scholar 

  • MacDonald CJ, Meck WH (2004) Systems-level integration of interval timing and reaction time. Neurosci Biobehav Rev 28:747–769

    Article  PubMed  Google Scholar 

  • Machado A, Guilhardi P (2000) Shifts in the psychometric function and their implications for models of timing. J Exp Anal Behav 74:25–54

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Waters N, Waters S, Carlsson A, Carlsson ML (1997) MK-801-induced hyperlocomotion: Differential effects of M100907, SDZ PSD 958 and raclopride. Eur J Pharmacol 335:107–116

    Article  PubMed  CAS  Google Scholar 

  • Maricq AV, Roberts S, Church RM (1981) Methamphetamine and time estimation. J Exp Psychol Anim Behav Proc 7:18–30

    Article  CAS  Google Scholar 

  • McMahon LR, Filip M, Cunningham KA (2001) Differential regulation of the mesoaccumbens circuit by serotonin 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J Neurosci 21:7781–7787

    PubMed  CAS  Google Scholar 

  • Meck WH (1986) Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacol Biochem Behav 25:1185–1189

    Article  PubMed  CAS  Google Scholar 

  • Meck WH (1996) Neuropharmacology of timing and time perception. Brain Res Cogn Brain Res 3:227–242

    Article  PubMed  CAS  Google Scholar 

  • Meck WH, Benson AM (2002) Dissecting the brain’s internal clock: how frontal–striatal circuitry keeps time and shifts attention. Brain Cogn 48:195–211

    Article  PubMed  Google Scholar 

  • Mengod G, Nguyen H, Le H, Waeber C, Lubbert H, Palacios JM (1990) The distribution and cellular localization of the serotonin 1C receptor mRNA in the rodent brain examined by in situ hybridization histochemistry. Comparison with receptor binding distribution. Neuroscience 35:577–591

    Article  PubMed  CAS  Google Scholar 

  • Molloy AG, Waddington JL (1987) Pharmacological characterization in the rat of grooming and other behavioral responses to the D1 dopamine receptor agonist R-SK&F 38393. J Psychopharmacol 1:177–183

    CAS  Google Scholar 

  • Molloy AG, O’Boyle KM, Pugh MT, Waddington JL (1986) Locomotor behaviors in response to new selective D-1 and D-2 dopamine receptor agonists, and the influence of selective antagonists. Pharmacol Biochem Behav 25:249–253

    Article  PubMed  CAS  Google Scholar 

  • Morilak DA, Garlow SJ, Ciaranello DR (1993) Immunocytochemical localization and description of neurons expressing serotonin2 receptors in the rat brain. Neuroscience 54:701–717

    Article  PubMed  CAS  Google Scholar 

  • Moser PC, Moran PM, Frank RA, Kehne JH (1996) Reversal of amphetamine-induced behaviours by MDL 100,907, a selective 5-HT2A antagonist. Behav Brain Res 73:163–167

    Article  PubMed  CAS  Google Scholar 

  • Munoz A, Lopez-Real A, Labandeira-Garcia JL, Guerra MJ (2003) Interaction between the noradrenergic and serotonergic systems in locomotor hyperactivity and striatal expression of Fos induced by amphetamine in rats. Exp Brain Res 153:92–99

    Article  PubMed  CAS  Google Scholar 

  • Ng N-K, Lee H-S, Wong PT-H (1999) Regulation of striatal dopamine release through 5-HT1 and 5-HT2 receptors. J Neurosci Res 55:600–607

    Article  PubMed  CAS  Google Scholar 

  • Nocjar C, Roth BL, Pehek EA (2002) Localization of 5-HT2A receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 111:163–176

    Article  PubMed  CAS  Google Scholar 

  • O’Boyle KM, Gaitanopoulos DE, Brenner M, Waddington JL (1989) Agonist and antagonist properties of benzazepine and thienopyridine derivatives at the D1 dopamine receptor. Neuropharmacology 28:401–405

    Article  PubMed  CAS  Google Scholar 

  • Olijslagers JE, Werkman TR, McCreary AC, Siarey R, Kruse CG, Wadman WJ (2004) 5-HT2 receptors differentially modulate dopamine-mediated auto-inhibition in A9 and A10 midbrain areas of the rat. Neuropharmacology 46:504–510

    Article  PubMed  CAS  Google Scholar 

  • Olijslagers JE, Perlstein B, Werkman TR, McCreary AC, Siarey R, Kruse CG, Wadman WJ (2005) The role of 5-HT2A receptor antagonism in amphetamine-induced inhibition of A10 dopamine neurons in vitro. Eur J Pharmacol 520:77–85

    Article  PubMed  CAS  Google Scholar 

  • O’Neill MF, Heron-Maxwell CL, Shaw G (1999) 5-HT2 receptor antagonism reduces hyperactivity induced by amphetamine, cocaine and MK-801 but not D1 agonist C-APB. Pharmacol Biochem Behav 63:237–243

    Article  PubMed  CAS  Google Scholar 

  • Pazos A, Cortes R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249

    Article  PubMed  CAS  Google Scholar 

  • Pehek EA, McFarlane HG, Maguschak K, Price B, Pluto CP (2001) M100,907, a selective 5-HT2A antagonist, attenuates dopamine release in the rat medial prefrontal cortex. Brain Res 888:51–59

    Article  PubMed  CAS  Google Scholar 

  • Pessia M, Jiang ZG, North RA, Johnson SW (1994) Actions of 5-hydroxytryptamine on ventral tegmental area neurons of the rat in vitro. Brain Res 654:324–330

    Article  PubMed  CAS  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs comparison between 5-HT2A and 5-HT2C receptors. Mol Brain Res 23:163–178

    Article  PubMed  CAS  Google Scholar 

  • Porras G, Di Matteo V, Fracasso C, Lucas G, De Deaurwaerdere P, Caccia S, Esposito E, Spampinato U (2002) 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 26:311–324

    Article  PubMed  CAS  Google Scholar 

  • Raiteri M, Bertollini A, Angelini F, Levi G (1975) d-Amphetamine as a releaser or reuptake inhibitor of biogenic amines in synaptosomes. Eur J Pharmacol 34:189–195

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    Article  PubMed  CAS  Google Scholar 

  • Saulsgiver KA, McClure EA, Wynne CDL (2006) Effects of d-amphetamine on the behavior of pigeons exposed to the peak procedure. Behav Proc 71:268–285

    Article  CAS  Google Scholar 

  • Scalzitti JM, Cervera LS, Smith C, Hensler JG (1999) Serotonin2A receptor modulation of D1 dopamine receptor-mediated grooming behavior. Pharmacol Biochem Behav 63:279–284

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CJ, Fadayel GM (1995) The selective 5-HT2A receptor antagonist, MDL 100,907, increases dopamine efflux in the prefrontal cortex of the rat. Eur J Pharmacol 273:273–279

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CJ, Fadayel GM (1996) Regional effects of MK-801 on dopamine release: Effects of competitive NMDA or 5-HT2A receptor blockade. J Pharmacol Exp Ther 277:1541–1549

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, Fadayel GM, Sullivan CK, Taylor VL (1992) 5-HT2 receptors exert a state-dependent regulation of dopaminergic function: studies with MDL 100907 and the amphetamine analogue, 3,4-methylenedioxymethamphetamine. Eur J Pharmacol 223:65–74

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CJ, Sullivan CK, Fadayal GM (1994) Blockade of striatal 5-hydroxytryptamine2 receptors reduces the increase in extracellular concentrations of dopamine produced by the amphetamine analogue 3,4-methylenedioxymethamphetamine. J Neurochem 62:1382–1389

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, van Tol HHM (1994) Dopamine receptor pharmacology. Trends Pharmacol Sci 15:264–270

    Article  PubMed  CAS  Google Scholar 

  • Sorenson SM, Kehne JH, Fadayel GM, Humphreys TM, Ketteler HJ, Sullivan CK, Taylor VL, Schmidt CJ (1993) Characterization of the 5-HT2 receptor antagonist MDL 100907 as a putative atypical antipsychotic: behavioural, electrophysiological and neurochemical studies. J Pharmacol Exp Ther 266:684–691

    Google Scholar 

  • Spyraki C, Fibiger HC, Phillips AG (1982) Dopaminergic substrates of amphetamine-induced place preference conditioning. Brain Res 253:185–193

    Article  PubMed  CAS  Google Scholar 

  • Strange PG (2001) Antipsychotic drugs: importance of dopamine receptors for mechanisms of therapeutic actions and side effects. Pharmacol Rev 153:119–133

    Google Scholar 

  • Stubbs DA (1976) Scaling of stimulus duration by pigeons. J Exp Anal Behav 6:15–25

    Article  Google Scholar 

  • Stubbs DA (1980) Temporal discrimination and a free-operant psychophysical procedure. J Exp Anal Behav 33:167–185

    Article  PubMed  CAS  Google Scholar 

  • Ugedo L, Grenhoff J, Svensson TH (1989) Ritanserin, a 5-HT2 receptor antagonist, activates midbrain dopamine neurons by blocking serotonergic inhibition. Psychopharmacology (Berl) 98:45–50

    Article  CAS  Google Scholar 

  • Velazquez Martinez DN, Valencia FM, Lopez CM, Villarreal JE (1995) Effects of indorenate on food intake: a comparison with fenfluramine and amphetamine. Psychopharmacology (Berl) 117:91–101

    Article  CAS  Google Scholar 

  • Vieira-Coelho MA, Soares-da-Silva P (2000) Ontogenic aspects of D1 receptor coupling to G proteins and regulation of rat jejunal Na+, K+ ATPase activity and electrolyte transport. Br J Pharmacol 129:573–581

    Article  PubMed  CAS  Google Scholar 

  • Waddington JL (1986) Behavioural correlates of the action of selective D-1 dopamine receptor antagonists. Impact of SCH 23390 and SKF 83566, and functionally interactive D-1:D-2 receptor systems. Biochem Pharmacol 35:3661–3667

    Article  PubMed  CAS  Google Scholar 

  • Westfall TC, Tittermary V (1982) Inhibition of electrically induced release of [3H]dopamine by serotonin from superfused rat striatal slices. Neurosci Lett 28:205–209

    Article  PubMed  CAS  Google Scholar 

  • Yan Q-S (2000) Activation of 5-HT2A/2C receptors within the nucleus accumbens increases local dopaminergic transmission. Brain Res Bull 51:75–81

    Article  PubMed  CAS  Google Scholar 

  • Ziance RJ (1977) Specificity of amphetamine induced release of norepinephrine and serotonin from rat brain in vitro. Res Commun Chem Pathol Pharmacol 18:627–644

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the BBSRC. We are grateful to Ms. V.K. Bak and Mr. R.W. Langley for skilled technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Body.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Body, S., Cheung, T.H.C., Bezzina, G. et al. Effects of d-amphetamine and DOI (2,5-dimethoxy-4-iodoamphetamine) on timing behavior: interaction between D1 and 5-HT2A receptors. Psychopharmacology 189, 331–343 (2006). https://doi.org/10.1007/s00213-006-0575-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0575-0

Keywords

Navigation