Skip to main content

Advertisement

Log in

The effects of chronic buprenorphine on intake of heroin and cocaine in rats and its effects on nucleus accumbens dopamine levels during self-administration

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Buprenorphine reduces both heroin and cocaine intake in opioid addicts, but the mechanisms remain unclear.

Objectives

To determine the effects of chronic buprenorphine treatment on intake of heroin and/or cocaine and measure nucleus accumbens (NAc) dopamine (DA) levels during self-administration.

Methods

In experiment 1, plasma levels of buprenorphine were determined in rats with buprenorphine osmotic minipumps (3.0 mg/kg/day) using an ELISA. In experiment 2, rats self-administered (FR1) one dose of heroin [(0.025, 0.05, or 0.1 mg/kg/infusion (inf)] and one dose of cocaine (0.25, 0.5, or 1.0 mg/kg/inf) before and under sham or chronic buprenorphine treatment (1.5 or 3.0 mg/kg/day). In experiment 3, the effect of sham or chronic buprenorphine treatment (3.0) on heroin (0.05 mg/kg/inf) or cocaine (0.5 mg/kg/inf) self-administration under FR5 and progressive ratio (PR) schedules was evaluated. In experiment 4, in vivo microdialysis sampling from the NAc was carried out during heroin (0.05 mg/kg/inf) or cocaine (0.5 mg/kg/inf) self-administration (FR1) under sham or buprenorphine treatment (3.0).

Results

Buprenorphine levels in plasma were stable over time. Buprenorphine treatment had no effect on total heroin intake at any dose or under any schedule, whereas it suppressed cocaine intake at all doses and under all schedules. Buprenorphine enhanced basal levels of DA, attenuated the NAc DA response to heroin, and enhanced the DA response to cocaine. It is interesting to note that buprenorphine increased the latency to respond to drug-associated cues at the start of self-administration sessions.

Conclusions

Chronic buprenorphine reduces cocaine, but not heroin, intake and possibly reduces drug seeking by reducing the salience of the drug-associated cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen RM, Carelli RM, Dykstra LA, Suchey TL, Everett CV (2005) Effects of the competitive N-Methyl-D-aspartate receptor antagonist, LY235959 [(-)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid], on responding for cocaine under both fixed and progressive ratio schedules of reinforcement. J Pharmacol Exp Ther 315:449–457

    Article  PubMed  CAS  Google Scholar 

  • Baptista MA, Martin-Fardon R, Weiss F (2004) Preferential effects of the metabotropic glutamate 2/3 receptor agonist LY379268 on conditioned reinstatement versus primary reinforcement: comparison between cocaine and a potent conventional reinforcer. J Neurosci 24:4723–4727

    Article  PubMed  CAS  Google Scholar 

  • Bickel WK, Stitzer ML, Bigelow GE, Liebson IA, Jasinski DR, Johnson RE (1988) Buprenorphine: dose-related blockade of opioid challenge effects in opioid dependent humans. J Pharmacol Exp Ther 247:47–53

    PubMed  CAS  Google Scholar 

  • Bossert JM, Busch RF, Gray SM (2005) The novel mGluR2/3 agonist LY379268 attenuates cue-induced reinstatement of heroin seeking. Neuroreport 16:1013–1016

    Article  PubMed  CAS  Google Scholar 

  • Britt MD, Wise RA (1983) Ventral tegmental site of opiate reward: antagonism by a hydrophilic opiate receptor blocker. Brain Res 258:105–108

    Article  CAS  Google Scholar 

  • Brown EE, Finlay JM, Wong JT, Damsma G, Fibiger HC (1991) Behavioral and neurochemical interactions between cocaine and buprenorphine: implications for the pharmacotherapy of cocaine abuse. J Pharmacol Exp Ther 256:119–126

    PubMed  CAS  Google Scholar 

  • Carroll ME, Lac ST (1992) Effects of buprenorphine on self-administration of cocaine and a nondrug reinforcer in rats. Psychopharmacology 106:439–446

    Article  PubMed  CAS  Google Scholar 

  • Comer SD, Walker EA, Collins ED (2005) Buprenorphine/naloxone reduces the reinforcing and subjective effects of heroin in heroin-dependent volunteers. Psychopharmacology 181:664–675

    Article  PubMed  CAS  Google Scholar 

  • Compton PA, Ling W, Charuvastra VC, Wesson DR (1995) Buprenorphine as a pharmacotherapy for cocaine abuse: a review of the evidence. J Addict Dis 14:97–114

    Article  PubMed  CAS  Google Scholar 

  • Devine DP, Wise RA (1994) Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. J Neurosci 14:1978–1984

    PubMed  CAS  Google Scholar 

  • Filibeck U, Castellano C, Oliverio A (1981) Differential effects of opiate agonists–antagonists on morphine-induced hyperexcitability and analgesia in mice. Psychopharmacology 73:134–136

    Article  PubMed  CAS  Google Scholar 

  • Gratton A, Wise RA (1994) Drug- and behavior-associated changes in dopamine-related electrochemical signals during intravenous cocaine self-administration in rats. J Neurosci 14:4130–4146

    PubMed  CAS  Google Scholar 

  • Greenwald MK, Schuh KJ, Hopper JA, Schuster CR, Johanson CE (2002) Effects of buprenorphine sublingual tablet maintenance on opioid drug-seeking behavior by humans. Psychopharmacology (Berl) 160(4):344–352

    Article  CAS  Google Scholar 

  • Greenwald MK, Johanson CE, Moody DE, Woods JH, Kilbourn MR, Koeppe RA, Schuster CR, Zubieta JK (2003) Effects of buprenorphine maintenance dose on mu-opioid receptor availability, plasma concentrations, and antagonist blockade in heroin-dependent volunteers. Neuropsychopharmacology 28:2000–2009

    PubMed  CAS  Google Scholar 

  • Hemby SE, Co C, Dworkin SI, Smith JE (1999) Synergistic elevations in nucleus accumbens extracellular dopamine concentrations during self-administration of cocaine/heroin combinations (Speedball) in rats. J Pharmacol Exp Ther 288:274–280

    PubMed  CAS  Google Scholar 

  • Huang NK, Tseng CJ, Wong CS, Tung CS (1997) Effects of acute and chronic morphine on DOPAC and glutamate at subcortical DA terminals in awake rats. Pharmacol Biochem Behav 56:363–371

    Article  PubMed  CAS  Google Scholar 

  • Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 20:7489–7495

    PubMed  CAS  Google Scholar 

  • Kosten TR, Gawin FH, Rounsaville BJ, Kleber HD (1986) Cocaine abuse among opioid addicts: demographic and diagnostic factors in treatment. Am J Drug Alcohol Abuse 12:1–16

    Article  PubMed  CAS  Google Scholar 

  • Kunko PM, French D, Izenwasser S (1998) Alterations in locomotor activity during chronic cocaine administration: effect on dopamine receptors and interaction with opioids. J Pharmacol Exp Ther 285:277–284

    PubMed  CAS  Google Scholar 

  • Leander JD (1983) Opioid agonist and antagonist behavioural effects of buprenorphine. Br J Pharmacol 78:607–615

    PubMed  CAS  Google Scholar 

  • Leri F, Stewart J (2001) Drug-induced reinstatement to heroin and cocaine seeking: a rodent model of relapse in polydrug use. Exp Clin Psychopharmacol 9:297–306

    Article  PubMed  CAS  Google Scholar 

  • Leri F, Tremblay A, Sorge RE, Stewart J (2004) Methadone maintenance reduces heroin- and cocaine-induced relapse without affecting stress-induced relapse in a rodent model of poly-drug use. Neuropsychopharmacology 29:1312–1320

    Article  PubMed  CAS  Google Scholar 

  • Lorrain DS, Arnold GM, Vezina P (2000) Previous exposure to amphetamine increases incentive to obtain the drug: long-lasting effects revealed by the progressive ratio schedule. Behav Brain Res 107:9–19

    Article  PubMed  CAS  Google Scholar 

  • Martin G, Ahmed SH, Blank T, Spiess J, Koob GF, Siggins GR (1999) Chronic morphine treatment alters NMDA receptor-mediated synaptic transmission in the nucleus accumbens. J Neurosci 19:9081–9089

    PubMed  CAS  Google Scholar 

  • Mello NK, Mendelson JH (1980) Buprenorphine suppresses heroin use by heroin addicts. Science 207:657–659

    Article  PubMed  CAS  Google Scholar 

  • Mello NK, Negus SS (1998) The effects of buprenorphine on self-administration of cocaine and heroin “speedball” combinations and heroin alone by rhesus monkeys. J Pharmacol Exp Ther 285:444–456

    PubMed  CAS  Google Scholar 

  • Mello NK, Lukas SE, Kamien JB, Mendelson JH, Drieze J, Cone EJ (1992) The effects of chronic buprenorphine treatment on cocaine and food self-administration by rhesus monkeys. J Pharmacol Exp Ther 260:1185–1193

    PubMed  CAS  Google Scholar 

  • Montoya ID, Gorelick DA, Preston KL, Schroeder JR, Umbricht A, Cheskin LJ, Lange WR, Contoreggi C, Johnson RE, Fudala PJ (2004) Randomized trial of buprenorphine for treatment of concurrent opiate and cocaine dependence. Clin Pharmacol Ther 75:34–48

    Article  PubMed  CAS  Google Scholar 

  • Morgan D, Brebner K, Lynch WJ, Roberts DC (2002) Increases in the reinforcing efficacy of cocaine after particular histories of reinforcement. Behav Pharmacol 13:389–396

    PubMed  CAS  Google Scholar 

  • Negus SS (2006) Choice between heroin and food in nondependent and heroin-dependent rhesus monkeys: effects of naloxone, buprenorphine, and methadone. J Pharmacol Exp Ther 317:711–723

    Article  PubMed  CAS  Google Scholar 

  • Negus SS, Bidlack JM, Mello NK, Furness MS, Rice KC, Brandt MR (2002) Delta opioid antagonist effects of buprenorphine in rhesus monkeys. Behav Pharmacol 13:557–570

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, San Diego, CA

    Google Scholar 

  • Rada P, Jensen K, Hoebel BG (2001) Effects of nicotine and mecamylamine-induced withdrawal on extracellular dopamine and acetylcholine in the rat nucleus accumbens. Psychopharmacology 157:105–110

    Article  PubMed  CAS  Google Scholar 

  • Rady JJ, Holmes BB, Portoghese PS, Fujimoto JM (2000) Morphine tolerance in mice changes response of heroin from mu to delta opioid receptors. Proc Soc Exp Biol Med 224:93–101

    Article  PubMed  CAS  Google Scholar 

  • Richardson NR, Gratton A (1996) Behavior-relevant changes in nucleus accumbens dopamine transmission elicited by food reinforcement: an electrochemical study in rat. J Neurosci 16:8160–8169

    PubMed  CAS  Google Scholar 

  • Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265–1271

    Article  PubMed  CAS  Google Scholar 

  • Schottenfeld RS, Pakes JR, Oliveto A, Ziedonis D, Kosten TR (1997) Buprenorphine vs methadone maintenance treatment for concurrent opioid dependence and cocaine abuse. Arch Gen Psychiatry 54:713–720

    PubMed  CAS  Google Scholar 

  • Schutz CG, Vlahov D, Anthony JC, Graham NM (1994) Comparison of self-reported injection frequencies for past 30 days and 6 months among intravenous drug users. J Clin Epidemiol 47:191–195

    Article  PubMed  CAS  Google Scholar 

  • Shippenberg TS, Bals-Kubik R, Herz A (1987) Motivational properties of opioids: evidence that an activation of delta-receptors mediates reinforcement processes. Brain Res 436:234–239

    Article  PubMed  CAS  Google Scholar 

  • Sorge RE, Rajabi H, Stewart J (2005) Rats maintained chronically on buprenorphine show reduced heroin and cocaine seeking in tests of extinction and drug-induced reinstatement. Neuropsychopharmacology 30:1681–1692

    Article  PubMed  CAS  Google Scholar 

  • Strain EC, Stitzer ML, Liebson IA, Bigelow GE (1996) Buprenorphine versus methadone in the treatment of opioid dependence: self-reports, urinalysis, and addiction severity index. J Clin Psychopharmacol 16:58–67

    Article  PubMed  CAS  Google Scholar 

  • Vaccarino FJ, Bloom FE, Koob GF (1985) Blockade of nucleus accumbens opiate receptors attenuates intravenous heroin reward in the rat. Psychopharmacology 86:37–42

    Article  PubMed  CAS  Google Scholar 

  • Vann RE, Balster RL, Beardsley PM (2006) Dose, duration, and pattern of nicotine administration as determinants of behavioral dependence in rats. Psychopharmacology 184:482–493

    Article  PubMed  CAS  Google Scholar 

  • Ward SJ, Morgan D, Roberts DC (2005) Comparison of the reinforcing effects of cocaine and cocaine/heroin combinations under progressive ratio and choice schedules in rats. Neuropsychopharmacology 30:286–295

    Article  PubMed  CAS  Google Scholar 

  • Winger G, Skjoldager P, Woods JH (1992) Effects of buprenorphine and other opioid agonists and antagonists on alfentanil- and cocaine-reinforced responding in rhesus monkeys. J Pharmacol Exp Ther 261:311–317

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Heshmat Rajabi for his assistance with microdialysis and HPLC technical support. This research was supported by an Interdisciplinary Health Research Team (IHRT) grant from the Canadian Institutes of Health Research (CIHR), and operating grants from CIHR and le fonds québécois de la recherche sur la nature et les technologies (FQRNT) to J.S. R.E.S. was supported by a graduate fellowship from the Natural Science and Engineering Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorge, R.E., Stewart, J. The effects of chronic buprenorphine on intake of heroin and cocaine in rats and its effects on nucleus accumbens dopamine levels during self-administration. Psychopharmacology 188, 28–41 (2006). https://doi.org/10.1007/s00213-006-0485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0485-1

Keywords

Navigation