Skip to main content
Log in

Oestrogen modulation of the effect of 8-OH-DPAT on prepulse inhibition: effects of aromatase deficiency and castration in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to investigate the interaction of sex steroid hormones, particularly oestrogen, in the regulation of prepulse inhibition (PPI) by serotonin-1A (5-HT1A) receptors.

Materials and methods

We studied aromatase knockout (ArKO) mice, which are unable to produce oestrogen but have high levels of testosterone, and the effects of castration.

Results and discussion

Treatment of male ArKO mice with the 5-HT1A receptor agonist, 8-hydroxy-dipropyl-aminotetralin (8-OH-DPAT), caused an increase in PPI that was significantly greater than in male wild-type controls. Castration of male mice caused a significant enhancement of the effect of 8-OH-DPAT in control mice; however, there was no change in the effect of this drug in ArKO mice. There was no significant effect of 8-OH-DPAT on PPI in either female ArKO or wild-type controls. In all experiments, the effects of 8-OH-DPAT on startle were not different between the groups. [3H]8-OH-DPAT autoradiography showed no differences in 5-HT1A receptor binding densities in areas of the forebrain, hippocampus or raphe region that could explain the PPI results. These data show that the absence of oestrogen in male ArKO mice leads to a greater effect of 5-HT1A receptor stimulation on PPI. This effect can be mimicked in male control mice by castration. The differential involvement of oestrogen and testosterone in these animal models is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bertrand PP, Paranavitane UT, Chavez C, Gogos A, Jones M, van den Buuse M (2005) The effect of low estrogen state on serotonin transporter function in mouse hippocampus: a behavioral and electrochemical study. Brain Res 1064:10–20

    Article  PubMed  CAS  Google Scholar 

  • Bonson KR, Johnson RG, Fiorella D, Rabin RA, Winter JC (1994) Serotonergic control of androgen-induced dominance. Pharmacol Biochem Behav 49:313–322

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156:234–258

    Article  PubMed  CAS  Google Scholar 

  • Britt KL, Drummond AE, Cox VA, Dyson M, Wreford NG, Jones MEE, Simpson ER, Findlay JK (2000) An age-related ovarian phenotype in mice with targeted disruption of the Cyp 19 (aromatase) gene. Endocrinology 141:2614–2623

    Article  PubMed  CAS  Google Scholar 

  • Cyr M, Landry M, Di Paolo T (2000) Modulation by estrogen-receptor directed drugs of 5-hydroxytryptamine-2A receptors in rat brain. Neuropsychopharmacology 23:69–78

    Article  PubMed  CAS  Google Scholar 

  • Czyrak A, Mackowiak M, Chocyk A, Fijal K, Gadek-Michalska A, Wedzony K (2003) 8-OHDPAT-induced disruption of prepulse inhibition in rats is attenuated by prolonged corticosterone treatment. Neuropsychopharmacology 28:1300–1310

    Article  PubMed  CAS  Google Scholar 

  • Dalla C, Antoniou K, Papadopoulou-Daifoti Z, Balthazart J, Bakker J (2004) Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology. Eur J Neurosci 20:217–228

    Article  PubMed  CAS  Google Scholar 

  • Davies MA, Sheffler DJ, Roth BL (2004) Aripiprazole: a novel atypical antipsychotic drug with a uniquely robust pharmacology. CNS Drug Rev 10:317–336

    Article  PubMed  CAS  Google Scholar 

  • Dean B, Tomaskovic-Crook E, Opeskin K, Keks N, Copolov D (1999) No change in the density of the serotonin1A receptor, the serotonin4 receptor or the serotonin transporter in the dorsolateral prefrontal cortex from subjects with schizophrenia. Neurochem Int 34:109–115

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo T (1994) Modulation of brain dopamine transmission by sex steroids. Rev Neurosci 5:27–42

    PubMed  Google Scholar 

  • Dulawa SC, Geyer MA (2000) Effects of strain and serotonergic agents on prepulse inhibition and habituation in mice. Neuropharmacology 39:2170–2179

    Article  PubMed  CAS  Google Scholar 

  • Dulawa SC, Scearce-Levie KA, Hen R, Geyer MA (2000) Serotonin releasers increase prepulse inhibition in serotonin 1B knockout mice. Neuropsychopharmacology 149:306–312

    CAS  Google Scholar 

  • Etgen AM, Ungar S, Petitti N (1992) Estradiol and progesterone modulation of norepinephrine neurotransmission: implications for the regulation of female reproductive behavior. J Neuroendocrinol 4:255–271

    Article  CAS  Google Scholar 

  • Fink G, Sumner B, Rosie R, Wilson H, McQueen J (1999) Androgen actions on central serotonin neurotransmission: relevance for mood, mental state and memory. Behav Brain Res 105:53–68

    Article  PubMed  CAS  Google Scholar 

  • Fisher CR, Graves KH, Parlow AF, Simpson ER (1998) Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc Natl Acad Sci USA 95:6965–6970

    Article  PubMed  CAS  Google Scholar 

  • Fitch RH, Denenberg VH (1998) A role for ovarian hormones in sexual differentiation of the brain. Behav Brain Sci 21:311–352

    PubMed  CAS  Google Scholar 

  • Franklin KBJ, Paxinos A (1997) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Geyer MA, Markou A (1995) Animal models of psychiatric disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 787–798

    Google Scholar 

  • Gogos A, van den Buuse M (2003) Castration reduces the effect of serotonin-1A receptor stimulation on prepulse inhibition in rats. Behav Neurosci 117:1407–1415

    Article  PubMed  CAS  Google Scholar 

  • Gogos A, van den Buuse M (2004) Estrogen and progesterone prevent disruption of prepulse inhibition by the serotonin-1A receptor agonist 8-OH-DPAT. J Pharmacol Exp Ther 309:267–274

    Article  PubMed  CAS  Google Scholar 

  • Gogos A, Kusljic S, van den Buuse M (2005) 8-OH-DPAT-induced effects on prepulse inhibition: pre- vs. post-synaptic 5-HT1A receptor activation. Pharmacol Biochem Behav 81:664–672

    Article  PubMed  CAS  Google Scholar 

  • Gogos A, Nathan PJ, Guille V, Croft RJ, van den Buuse M (2006) Estrogen prevents 5-HT1A receptor-induced disruptions of prepulse inhibition in healthy women. Neuropsychopharmacology 31:885–889

    Article  PubMed  CAS  Google Scholar 

  • Gore AC (2001) Gonadotropin-releasing hormone neurons, NMDA receptors, and their regulation by steroid hormones across the reproductive life cycle. Brain Res Brain Res Rev 37:235–48

    Article  PubMed  CAS  Google Scholar 

  • Halbreich U, Kahn LS (2003) Hormonal aspects of schizophrenias: an overview. Psychoneuroendocrinology 28:1–16

    CAS  Google Scholar 

  • Hill RA, Pompolo S, Jones ME, Simpson ER, Boon WC (2004) Estrogen deficiency leads to apoptosis in dopaminergic neurons in the medial preoptic area and arcuate nucleus of male mice. Mol Cell Neurosci 27:466–476

    Article  PubMed  CAS  Google Scholar 

  • Hjorth S, Sharp T (1991) Effect of the 5-HT1A receptor agonist 8-OH-DPAT on the release of 5-HT in dorsal and median raphe-innervated rat brain regions as measured by in vivo microdialysis. Life Sci 48:1779–1786

    Article  PubMed  CAS  Google Scholar 

  • Kreiss DS, Lucki I (1994) Differential regulation of serotonin (5-HT) release in the striatum and hippocampus by 5-HT1A autoreceptors of the dorsal and median raphe nuclei. J Pharmacol Exp Ther 269:1268–1279

    PubMed  CAS  Google Scholar 

  • Landry M, Di Paolo T (2003) Effect of chronic estradiol, tamoxifen or raloxifene treatment on serotonin 5-HT1A receptor. Mol Brain Res 112:82–89

    Article  PubMed  CAS  Google Scholar 

  • Le Saux M, Di Paolo T (2005) Changes in 5-HT1A receptor binding and G-protein activation in the rat brain after estrogen treatment: comparison with tamoxifen and raloxifene. J Psychiatry Neurosci 30:110–117

    PubMed  Google Scholar 

  • Luine VN, Grattan DR, Selmanoff M (1997) Gonadal hormones alter hypothalamic GABA and glutamate levels. Brain Res 747:165–168

    Article  PubMed  CAS  Google Scholar 

  • Martin S, Jones ME, Simpson ER, van den Buuse M (2003) Impaired spatial working memory in aromatase-deficient (ArKO) mice. Neuroreport 14:1979–1982

    Article  PubMed  CAS  Google Scholar 

  • McCullough LD, Blizzard K, Simpson ER, Oz OK, Hurn PD (2003) Aromatase cytochrome P450 and extragonadal estrogen play a role in ischemic neuroprotection. J Neurosci 23:8701–8705

    PubMed  CAS  Google Scholar 

  • McPherson SJ, Wang H, Jones ME, Pedersen J, Iismaa TP, Wreford N, Simpson ER, Risbridger GP (2001) Elevated androgens and prolactin in aromatase-deficient mice cause enlargement, but not malignancy, of the prostate gland. Endocrinology 142:2458–2467

    Article  PubMed  CAS  Google Scholar 

  • Mize AL, Young LJ, Alper RH (2003) Uncoupling of 5-HT1A receptors in the brain by estrogens: regional variations in antagonism by ICI 182,780. Neuropharmacology 44:584–591

    Article  PubMed  CAS  Google Scholar 

  • National Health and Medical Research Council of Australia (1990) Australian code of practice for the care and use of animals for scientific purposes. Australian Government Publishing Services, Canberra

    Google Scholar 

  • Olivier B, Leahy C, Mullen T, Paylor R, Groppi VE, Sarnyai Z, Brunner D (2001) The DBA/2J strain and prepulse inhibition of startle: a model system to test antipsychotics? Psychopharmacology 156:284–290

    Article  PubMed  CAS  Google Scholar 

  • Pavey GM, Copolov DL, Dean B (2002) High-resolution phosphor imaging: validation for use with human brain tissue sections to determine the affinity and density of radioligand binding. J Neurosci Methods 116:157–163

    Article  PubMed  CAS  Google Scholar 

  • Riecher-Rössler A (2002) Oestrogen effects in schizophrenia and their potential therapeutic implications—review. Arch Womens Ment Health 5:111–118

    Article  PubMed  Google Scholar 

  • Riecher-Rossler A, Hafner H, Stumbaum M, Maurer K, Schmidt R (1994) Can estradiol modulate schizophrenic symptomatology? Schizophr Bull 20:203–214

    PubMed  CAS  Google Scholar 

  • Robertson KM, O’Donnell L, Jones MEE, Meachem SJ, Boon WC, Fischer CR, Graves KH, McLachlan RI, Simpson ER (1999) Impairment of spermatogenesis in mice lacking a functional aromatase (cyp 19) gene. Proc Natl Acad Sci USA 96:7986–7991

    Article  PubMed  CAS  Google Scholar 

  • Sakaue M, Ago Y, Baba A, Matsuda T (2003) The 5-HT1A receptor agonist MKC-242 reverses isolation rearing-induced deficits of prepulse inhibition in mice. Psychopharmacology 170:73–79

    Article  PubMed  CAS  Google Scholar 

  • Seeman MV (1997) Psychopathology in women and men: focus on female hormones. Am J Psychiatr 154:1641–1647

    PubMed  CAS  Google Scholar 

  • Seeman MV, Lang M (1990) The role of estrogens in schizophrenia gender differences. Schizophr Bull 16:185–194

    PubMed  CAS  Google Scholar 

  • Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86:225–230

    Article  PubMed  CAS  Google Scholar 

  • Sipes TA, Geyer MA (1995) 8-OH-DPAT disruption of prepulse inhibition in rats: reversal with (+)WAY 100,135 and localization of site of action. Psychopharmacology 117:41–48

    Article  PubMed  CAS  Google Scholar 

  • van den Buuse M, Eikelis N (2001) Estrogen increases prepulse inhibition of acoustic startle in rats. Eur J Pharmacol 425:33–41

    Article  PubMed  Google Scholar 

  • van den Buuse M, Wegener N (2005) Involvement of serotonin1A receptors in cardiovascular responses to stress: a radio-telemetry study in four rat strains. Eur J Pharmacol 507:187–198

    Article  PubMed  CAS  Google Scholar 

  • van den Buuse M, Simpson ER, Jones ME (2003) Prepulse inhibition of acoustic startle in aromatase knock-out mice: effects of age and gender. Genes Brain Behav 2:93–102

    Article  PubMed  Google Scholar 

  • van den Buuse M, Morris M, Chavez C, Martin S, Wang JH (2004) Effect of adrenalectomy and corticosterone replacement on prepulse inhibition and locomotor activity in mice. Br J Pharmacol 142:543–550

    Article  PubMed  CAS  Google Scholar 

  • van den Buuse M, van Driel IR, Samuelson LC, Pijnappel M, Martin S (2005) Reduced effects of amphetamine on prepulse inhibition of startle in gastrin-deficient mice. Neurosci Lett 373:237–242

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Udeni Paranavitane for assistance with some of the experiments. Dr. M. van den Buuse was supported by the Griffith Senior Research Fellowship of the University of Melbourne. This study was supported by the National Health and Medical Research Council of Australia. The Mental Health Research Institute is a Stanley Research Centre, supported by the Stanley Medical Research Institute. All experiments described in this paper comply with the current laws of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten van den Buuse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogos, A., Martin, S., Jones, M.E. et al. Oestrogen modulation of the effect of 8-OH-DPAT on prepulse inhibition: effects of aromatase deficiency and castration in mice. Psychopharmacology 188, 100–110 (2006). https://doi.org/10.1007/s00213-006-0472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0472-6

Keywords

Navigation