Skip to main content

Advertisement

Log in

C957T polymorphism of the dopamine D2 receptor gene modulates the effect of nicotine on working memory performance and cortical processing efficiency

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

In both animals and humans, nicotine produces behavioral effects that vary across individuals. Studies examining the role of genetic variability in modulating individual response to nicotine in humans have increased, with recent work showing that genetic variation at the dopamine D2 receptor (DRD2) predicts response to pharmacotherapy for tobacco dependence.

Objectives

To determine whether a polymorphism of the DRD2 gene, C957T, that alters DRD2 binding availability in humans modifies the effects of nicotine on verbal working memory performance and on processing efficiency of brain regions that support verbal working memory.

Materials and methods

Working memory and brain function were assessed in 36 adult subjects (15 957T allele carriers and 21 957C homozygotes), each of whom was studied twice, once after placement of a placebo patch and once after placement of a nicotine patch. Brain function was assessed using functional magnetic resonance imaging while the subjects performed a verbal working memory task.

Results

During performance of a task with high verbal working memory load, nicotine administration worsened performance accuracy and reduced the processing efficiency of brain regions that support phonological rehearsal during verbal working memory in carriers of the 957T allele.

Conclusions

These findings are consistent with the notion that genetic variation in DRD2 contributes to individual variation in a range of behavioral and brain responses to nicotine in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aalto S, Bruck A, Laine M, Nagren K, Rinne JO (2005) Frontal and temporal dopamine release during working memory and attention tasks in healthy humans: a positron emission tomorgraphy study using the high-affinity dopamine D2 receptor ligand [11C]FLB 457. J Neurosci 25:2471–2477

    Article  PubMed  CAS  Google Scholar 

  • Anderson ND, Iidaka T, Cabeza R, Kapur S, McIntosh AR, Craik FIM (2000) The effects of divided attention on encoding- and retrieval-related brain activity: a pet study of younger and older adults. J Cogn Neurosci 12:775–792

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AFT, Goldman-Rakic PS (1998) Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch Gen Psychiatry 55:362–368

    Article  PubMed  CAS  Google Scholar 

  • Bahk JY, Li S, Park MS, Kim MO (2002) Dopamine D1 and D2 receptor mRNA up-regulation in the caudate-putamen and nucleus accumbens of rat brains by smoking. Prog Neuropsychopharmacol Biol Psychiatry 26:1095–1104

    Article  PubMed  CAS  Google Scholar 

  • Baldinger B, Hasenfratz M, Battig K (1995) Comparison of the effects of nicotine on a fixed rate and a subject-paced version of the rapid visual information processing task. Psychopharmacology 121:396–400

    Article  PubMed  CAS  Google Scholar 

  • Barazangi N, Role LW (2001) Nicotine-induced enhancement of glutamatergic and GABAergic synaptic transmission in the mouse amygdala. J Neurophysiol 86:463–474

    PubMed  CAS  Google Scholar 

  • Bates T, Mangan G, Stough C, Corballis P (1995) Smoking, processing speed and attention in a choice reaction time task. Psychopharmacology 120:209–212

    Article  PubMed  CAS  Google Scholar 

  • Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571

    PubMed  CAS  Google Scholar 

  • Benowitz NL, Chan K, Denaro CP, Jacob P (1991) Stable isotope method for studying transdermal drug absorption: the nicotine patch. Clin Pharmacol Ther 50:286–293

    Article  PubMed  CAS  Google Scholar 

  • Brandon TH (1999) Expectancies for tobacco smoking. In: Kirsh I (ed) How expectancies shape experience. American Psychological Association, Washington, DC, pp 263–299

    Chapter  Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–932

    Article  PubMed  CAS  Google Scholar 

  • Cabeza R, Grady CL, Nyberg L, McIntosh AR, Tulving E, Kapur S, Jennings JM, Houle S, Craik FIM (1997) Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. J Neurosci 17:391–400

    PubMed  CAS  Google Scholar 

  • Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ, Evans AC (1998) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imag 17:463–468

    Article  CAS  Google Scholar 

  • Conners CK, Levin ED, Sparrow E, Hinton SC, Erhardt D, Meck WH, Rose JE, March J (1996) Nicotine and attention in adult attention deficit hyperactivity disorder (ADHD). Psychopharmacol Bull 32:67–73

    PubMed  CAS  Google Scholar 

  • Corrigall WA, Coen WM, Adamson KL (1994) Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 653:278–284

    Article  PubMed  CAS  Google Scholar 

  • David SP, Niaura R, Papandonatos GD, Shadel WG, Burkholder GJ, Britt DM, Day A, Stumpff J, Hutchison K, Murphy M, Johnstone E, Griffiths Se, Walton RT (2003) Does the DRD2-Taq1 A polymorphism influence treatment response to bupropion hydrochloride for reduction of the nicotine withdrawal syndrome? Nicotine Tob Res 5:935–942

    Article  PubMed  CAS  Google Scholar 

  • Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J, Gejman PV (2003) Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 12:205–216

    Article  PubMed  CAS  Google Scholar 

  • Ernst M, Heishman SJ, Spurgeon L, London ED (2001) Smoking history and nicotine effects on cognitive performance. Neuropsychopharmacology 25:313–319

    Article  PubMed  CAS  Google Scholar 

  • Foulds J, Stapleton J, Swettenham J, Bell N, McSorley K, Russell MAH (1996) Cognitive performance effects of subcutaneous nicotine in smokers and never-smokers. Psychopharmacology 127:31–38

    PubMed  CAS  Google Scholar 

  • Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RS (1995) Spatial registration and normalization of images. Hum Brain Mapp 2:165–189

    Article  Google Scholar 

  • Fu Y, Matta SG, James TJ, Sharp BM (1998) Nicotine-induced norepinephrine release in the rat amygdala and hippocampus is mediated through brainstem nicotinic cholinergic receptors. J Pharmacol Exp Ther 284:1188–1196

    PubMed  CAS  Google Scholar 

  • Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878

    Article  PubMed  Google Scholar 

  • George TP, Vessicchio JC, Termine A, Sahady DM, Head CA, Pepper WT, Kosten TR, Wexler BE (2002) Effects of smoking abstinence on visuospatial working memory function in schizophrenia. Neuropsychopharmacology 26:75–85

    Article  PubMed  Google Scholar 

  • Gibbs SEB, D’Esposito M (2005a) A functional MRI study of the effects of bromocriptine, a dopamine receptor agonist, on component processes of working memory. Psychopharmacology 180:644–653

    Article  PubMed  CAS  Google Scholar 

  • Gibbs SEB, D’Esposito M (2005b) Individual capacity differences predict working memory performance and prefrontal activity following dopamine receptor stimulation. Cogn Affect Behav Neurosci 5:212–221

    Article  PubMed  Google Scholar 

  • Gilbert DG, Estes SL, Welser R (1997) Does noise stress modulate effects of smoking/nicotine? Mood, vigilance, and EEG responses. Psychopharmacology 129:382–389

    Article  PubMed  CAS  Google Scholar 

  • Griesar WS, Zajdel DP, Oken BS (2002) Nicotine effects on alertness and spatial attention in non-smokers. Nicotine Tob Res 4:185–194

    Article  PubMed  CAS  Google Scholar 

  • Hamilton M (1961) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    Google Scholar 

  • Hasenfratz M, Pfiffner D, Pellaud K, Battig K (1989) Postlunch smoking for pleasure seeking or arousal maintenance? Pharmacol Biochem Behav 34:631–639

    Article  PubMed  CAS  Google Scholar 

  • Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO (1991) The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict 86:1119–1127

    Article  PubMed  CAS  Google Scholar 

  • Heishman SJ (1998) What aspects of human performance are truly enhanced by nicotine? Addiction 93:317–320

    Article  PubMed  CAS  Google Scholar 

  • Heishman SJ, Snyder FR Henningfield JE (1993) Performance, subject, and physiological effects of nicotine in nonsmokers. Drug Alcohol Depend 34:11–18

    Article  PubMed  CAS  Google Scholar 

  • Heishman SJ, Taylor RC, Henningfield JE (1994) Nicotine and smoking: a review of effects on human performance. Exp Clin Psychopharmacol 2:345–395

    Article  CAS  Google Scholar 

  • Hindmarch I, Kerr JS, Sherwood N (1990) Effects of nicotine gum on psychomotor performance in smokers and nonsmokers. Psychopharmacology 100:535–541

    Article  PubMed  CAS  Google Scholar 

  • Hirvonen M, Laakso A, Nagren K, Rinne JO, Pohjalainen T, Hietala J (2004) C957T polymorphism of the dopamine D2 receptor (DRD2) gene affects striatal DRD2 availability in vivo. Mol Psychiatry 9:1060–1066, 10:889 (Erratum)

    Article  PubMed  CAS  Google Scholar 

  • Holmes AP, Friston KJ (1998) Generalizability, random effects, and population inference. Neuroimage 7:S34

    Google Scholar 

  • Houlihan ME, Pritchard WS, Robinson JH (1996) Faster P300 latency after smoking in visual but not auditory oddball tasks. Psychopharmacology 123:231–238

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Hatsukami DK (1998) Errors in using tobacco withdrawal scale. Tob Control 7:92–93

    Article  PubMed  CAS  Google Scholar 

  • Jacob P, Wilson M, Benowitz NL (1981) Improved gas chromatographic method for the determination of nicotine and cotinine in biologic fluids. J Chromatogr 222:61–70

    PubMed  CAS  Google Scholar 

  • Jacobsen LK, D’Souza DC, Mencl WE, Pugh KR, Skudlarski P, Krystal JH (2004) Nicotine effects on brain function and functional connectivity in schizophrenia. Biol Psychiatry 55:850–858

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen LK, Krystal JH, Mencl WE, Westerveld M, Frost SJ, Pugh KR (2005) Effects of smoking and smoking abstinence on cognition in adolescent tobacco smokers. Biol Psychiatry 57:56–66

    Article  PubMed  Google Scholar 

  • Jamnder LD, Shapiro D, Jarvik ME (1999) Nicotine reduces the frequency of anger reports in smokers and nonsmokers with high but not low hostility: an ambulatory study. Exp Clin Psychopharmacol 7:454–463

    Article  Google Scholar 

  • Keenan RM, Hatsukami DK, Anton DJ (1989) The effects of short-term smokeless tobacco deprivation on performance. Psychopharmacology 98:126–130

    Article  PubMed  CAS  Google Scholar 

  • Kimberg DY, D’Esposito M, Farah MJ (1997) Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport 8:3581–3585

    PubMed  CAS  Google Scholar 

  • Kirk RE (1982) Experimental design: procedures for the social sciences. Wadsworth, Belmont, CA

    Google Scholar 

  • Krebs SJ, Petros TV, Beckwith BE (1994) Effects of smoking on memory for prose passages. Physiol Behav 56:723–727

    Article  PubMed  CAS  Google Scholar 

  • Krishnan-Sarin S, Rosen MI, O’Malley SS (1999) Naloxone challenge in smokers. Preliminary evidence of an opioid component in nicotine dependence. Arch Gen Psychiatry 56:663–668

    Article  PubMed  CAS  Google Scholar 

  • Kumari V, Gray JA, ffytche DH, Mitterschiffthaler MT, Das M, Zachariah E, Vythelingum GN, Williams SCR, Simmons A, Sharma T (2003) Cognitive effects of nicotine in humans: an fMRI study. Neuroimage 19:1002–1013

    Article  PubMed  Google Scholar 

  • Landers DM, Crews DJ, Boutcher SH, Skinner JS, Gustafsen S (1992) The effects of smokeless tobacco on performance and psychophysiological response. Med Sci Sports Exerc 24:895–903

    PubMed  CAS  Google Scholar 

  • Lawrence NS, Ross TJ, Stein EA (2002) Cognitive mechanisms of nicotine on visual attention. Neuron 36:539–548

    Article  PubMed  CAS  Google Scholar 

  • Le Houezec J, Halliday R, Benowitz NL, Callaway E, Naylor H, Herzig K (1994) A low dose of subcutaneous nicotine improved information processing in non-smokers. Psychopharmacology 114:628–634

    Article  PubMed  Google Scholar 

  • Lerman C, Jepson C, Wileyto EP, Epstein LH, Rukstalis M, Patterson F, Kaufmann V, Restine S, Hawk L, Niaura R, Berrettini W (2006) Role of functional genetic variation in the dopamine D2 receptor (DRD2) in response to bupropion and nicotine replacement therapy for tobacco dependence: results of two randomized clinical trials. Neuropsychopharmacology online

  • Li X, Rainnie DG, McCarley RW, Greene RW (1998) Presynaptic nicotinic receptors facilitate monoaminergic transmission. J Neurosci 18:1904–1912

    PubMed  CAS  Google Scholar 

  • Lopez E, Arce C, Vicente S, Oset-Gasque MJ, Gonzalez MP (2001) Nicotinic receptors mediate the release of amino acid neurotransmitters in cultured cortical neurons. Cereb Cortex 11:158–163

    Article  PubMed  CAS  Google Scholar 

  • Macwhinney B, Cohen J, Provost J (1997) The Psyscope experiment building system. Spat Vis 11:99–101

    PubMed  CAS  Google Scholar 

  • Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Kolachana B, Callicott JH, Weinberger DR (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 100:6186–6191

    Article  PubMed  CAS  Google Scholar 

  • McGuire PK, Silbersweig DA, Murray RM, David AS, Frackowiak RS, Frith CD (1996) Functional anatomy of inner speech and auditory verbal imagery. Psychol Med 26:29–38

    Article  PubMed  CAS  Google Scholar 

  • Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW (2000) Methylphenidate enhance working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci 20:RC65

    PubMed  CAS  Google Scholar 

  • Neville MJ, Johnstone EC, Walton RT (2004) Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Human Mutat 23:540–545

    Article  CAS  Google Scholar 

  • Nisell M, Nomikos GG, Svensson TH (1994) Systemic nicotine-induced dopamine release from the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 16:36–44

    Article  PubMed  CAS  Google Scholar 

  • Papademetris X, Jackowski AP, Schultz RT, Staib LH, Duncan JS (2003) Computing 3D non-rigid brain registrations using extended robust point matching for composite multisubject fMRI analysis. Medical image computing and computer assisted intervention. Springer, Berlin Heidelberg New York, pp 788–795

    Google Scholar 

  • Papademetris X, Jackowski AP, Schultz RT, Staib LH, Duncan JS (2004) Intensity and point-feature nonrigid registration. Medical image computing and computer assisted intervention. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Paulesu E, Frith CD, Frackowiak RSJ (1993) The neural correlates of the verbal component of working memory. Nature 362:342–345

    Article  PubMed  CAS  Google Scholar 

  • Perkins KA, Grobe JE, Fonte C, Goettler J, Caggiula AR, Reynolds WA, Stiller RL, Scierka A, Jacob RG (1994) Chronic and acute tolerance to subjective, behavioral and cardiovascular effects of nicotine in humans. J Pharmacol Exp Ther 270:628–638

    PubMed  CAS  Google Scholar 

  • Petrie RX, Dreary IJ (1989) Smoking and information processing. Psychopharmacology 99:393–396

    Article  PubMed  CAS  Google Scholar 

  • Phillips AG, Ahn S, Floresco SB (2004) Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task. J Neurosci 24:547–553

    Article  PubMed  CAS  Google Scholar 

  • Phillips S, Fox P (1998) An investigation into the effects of nicotine gum on short-term memory. Psychopharmacology 140:429–433

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR (2003) Nicotine as a modulator of behavior: beyond the inverted U. Trends Pharmacol Sci 24:493–499

    Article  PubMed  CAS  Google Scholar 

  • Pineda JA, Herrera C, Kang C, Sandler A (1998) Effects of cigarette smoking and 12-h abstention on working memory during a serial-probe recognition task. Psychopharmacology 139:311–321

    Article  PubMed  CAS  Google Scholar 

  • Poltavski CV, Petros T (2005) Effects of transdermal nicotine on prose memory and attention in smokers and nonsmokers. Physiol Behav 83:833–843

    Article  PubMed  CAS  Google Scholar 

  • Pomerleau OF (1995) Individual differences in sensitivity to nicotine: implications for genetic research on nicotine dependence. Behav Genet 25:161–177

    Article  PubMed  CAS  Google Scholar 

  • Pritchard WS, Robinson JH, Guy TD (1992) Enhancement of continuous performance task reaction time by smoking in non-deprived smokers. Psychopharmacology 108:437–442

    Article  PubMed  CAS  Google Scholar 

  • Rajah MN, D’Esposito M (2005) Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain 128:1964–1983

    Article  PubMed  Google Scholar 

  • Repp BH, Frost R (1988) Detectability of words and nonwords in two kinds of noise. J Acoust Soc Am 84:1929–1932

    Article  PubMed  CAS  Google Scholar 

  • Rowell PP, Carr LA, Garner AC (1987) Stimulation of tritiated dopamine release by nicotine in rat nucleus accumbens. J Neurochem 49:1449–1454

    Article  PubMed  CAS  Google Scholar 

  • Rypma B, D’Esposito M (1999) The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proc Natl Acad Sci U S A 96:6558–6563

    Article  PubMed  CAS  Google Scholar 

  • Shergill SS, Bullmore ET, Brammer MJ, Williams SCR, Murray RM, McGuire PK (2001) A functional study of auditory verbal imagery. Psychol Med 31:241–253

    Article  PubMed  CAS  Google Scholar 

  • Shi MM, Myrand SP, Bleavins MR, de la Iglesia FA (1999) High throughput genotyping for the detection of a single nucleotide polymorphism in NAD(P)H quinone oxidoreductase (DT diaphorase) using TaqMan probes. Mol Pathol 52:295–299

    PubMed  CAS  Google Scholar 

  • Shiffman S, Paty JA, Gnys M, Kassel JD, Elash C (1995) Nicotine withdrawal in chippers and regular smokers: subjective and cognitive effects. Health Psychol 14:301–309

    Article  PubMed  CAS  Google Scholar 

  • Snyder FR, Davis FC, Henningfield JE (1989) The tobacco withdrawal syndrome: performance decrements assessed on a computerized test battery. Drug Alcohol Depend 23:259–266

    Article  PubMed  CAS  Google Scholar 

  • Spilich GJ, June L, Renner J (1992) Cigarette smoking and cognitive performance. Br J Addict 87:1313–1326

    Article  PubMed  CAS  Google Scholar 

  • Spitzer RL, Endicot J, Fyer AJ, Mannuzza S, Klein DF, Schleyer B, Aaronson C, Martin LY, Lipsitz JD, Chapman TF, Graham R (1997) Schedule for affective disorders and schizophrenia—lifetime version, updated for DSM-IV. New York State Psychiatric Institute, New York

    Google Scholar 

  • Stanislaw H, Todorov N (1999) Calculation of signal detection theory measures. Behav Res Meth Instrum Comput 31:137–149

    CAS  Google Scholar 

  • Summers KL, Giacobini E (1995) Effects of local and repeated systemic administration of (−)nicotine on extracellular levels of acetylcholine, norepinephrine, dopamine, and serotonin in rat cortex. Neurochem Res 20:753–759

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Zhang X, Chen X, Zhang P, Bao M, Zhang D, Chen J, He S, Hu X (2005) Age-dependent brain activation during forward and backward digit recall revealed by fMRI. Neuroimage 26:36–47

    Article  PubMed  CAS  Google Scholar 

  • Swan GE, Jack LM, Ward MM (1997) Subgroups of smokers with different success rate after use of transdermal nicotine. Addiction 92:207–218

    Article  PubMed  CAS  Google Scholar 

  • Swan GE, Valdes AM, Ring HZ, Khroyan TV, Jack LM, Ton CC, Curry SJ, McAfee T (2005) Dopamine receptor DRD2 genotype and smoking cessation outcome following treatment with bupropion SR. Pharmacogenetics 5:21–29

    CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme Medical, New York

    Google Scholar 

  • Tipper CM, Cairo TA, Woodward TS, Phillips AG, Liddle PF, Ngan ETC (2005) Processing efficiency of a verbal working memory system is modulated by amphetamine: an fMRI investigation. Psychopharmacology 180:634–643

    Article  PubMed  CAS  Google Scholar 

  • Tsukada H, Miyasato K, Nishiyama S, Fukumoto D, Kakiuchi T, Domino EF (2005) Nicotine normalizes increased prefrontal cortical dopamine D1 receptor binding and decreased working memory performance produced by repeated pretreatment with MK-801: a PET study in conscious monkeys. Neuropsychopharmacology 30:2144–2153

    Article  PubMed  CAS  Google Scholar 

  • U.S. Department of Health and Human Services (1988) The health consequences of smoking: nicotine addiciton. A report of the Surgeon General. US Government Printing Office

  • Watanabe M, Kodama T, Kikosaka K (1997) Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. J Neurophysiol 78:2795–2798

    PubMed  CAS  Google Scholar 

  • West R, Hack S (1991) Effect of cigarettes on memory search and subjective ratings. Pharmacol Biochem Behav 38:281–286

    Article  PubMed  CAS  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:572–575

    Article  PubMed  CAS  Google Scholar 

  • Woods RP (1996) Modeling for intergroup comparisons of imaging data. Neuroimage 4:S84–S94

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Jonathan S. Feinstein, Ph.D., for statistical consultation and Ann Marie Lacobelle for technical assistance. BioImage Suite was developed with support from NIH RO1 EB006494. This research was supported by the following grants: VA Advanced Research Career Development Award (LKJ), DA14655 (LKJ), DA017333 (LKJ), DA12690 (JG), DA12849 (JG), K24 DA15105 (JG), and M01RR000125 (Yale GCRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie K. Jacobsen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1s

(DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobsen, L.K., Pugh, K.R., Mencl, W.E. et al. C957T polymorphism of the dopamine D2 receptor gene modulates the effect of nicotine on working memory performance and cortical processing efficiency. Psychopharmacology 188, 530–540 (2006). https://doi.org/10.1007/s00213-006-0469-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0469-1

Keywords

Navigation