Skip to main content
Log in

ROCK inhibition produces anxiety-related behaviors in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The role of Rho/Rho-associated kinase (ROCK) in regulating dendritic and axonal morphology during development has gained much attention. Very little is known, however, about the role of the Rho/ROCK pathway in emotional behavior.

Objective

To investigate the role of ROCK in emotional behaviors. We examined how the ROCK inhibitor Y27632 affects the performance of mice on three behavioral tests that measure anxiety-related behaviors.

Results

In the elevated plus-maze test, Y27632 (10 nmol, intracerebroventricular) induced a significant decrease in the percentage of time spent in the open arms and in the percentage of entries into open arms. In the fear conditioning test, Y27632-treated mice froze significantly more often and longer than did saline-treated mice. In the hole-board test, Y27632 significantly suppressed head-dipping behavior in Y27632-treated mice than in saline-treated mice. On the other hand, Y27632 did not produce on spontaneous alteration performance in the Y-maze test. These results indicate that ROCK inhibition increased anxiety-related behaviors.

Conclusion

Our findings suggest that the ROCK pathway is involved in the expression of anxiety- and fear-related behaviors. Furthermore, we propose that if the Rho/ROCK pathway plays an important role in mediating anxiety-related behaviors in humans, it may prove to be a novel system for anxiolytics to target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amano M, Ito M, Kimura K, Fukuta Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271:20246–20249

    Article  PubMed  CAS  Google Scholar 

  • Bezchlibnyk-Butler K, Aleksic I, Kennedy SH (2000) Citalopram—a review of pharmacological and clinical effects. J Psychiatry Neurosci 25:241–254

    PubMed  CAS  Google Scholar 

  • Boissier JR, Simon P (1962) La reaction dexploration chez la souris. Therapie 17:1225–1232

    PubMed  CAS  Google Scholar 

  • Boyer WF, Feighner JP (1992) An overview of paroxetine. J Clin Psychiatry 53:3–6

    PubMed  Google Scholar 

  • Burghardt NS, Sullivan GM, McEwen BS, Gorman JM, LeDoux JE (2004) The selective serotonin reuptake inhibitor citalopram increases fear after acute treatment but reduces fear with chronic treatment: a comparison with tianeptine. Biol Psychiatry 55:1171–1178

    Article  PubMed  CAS  Google Scholar 

  • Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721

    Article  PubMed  CAS  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105

    Article  PubMed  CAS  Google Scholar 

  • Fanselow MS (1980) Conditioned and unconditional components of post-shock freezing. Pavlov J Biol Sci 15:177–182

    PubMed  CAS  Google Scholar 

  • Fanselow MS, Tighe TJ (1988) Contextual conditioning with massed versus distributed unconditional stimuli in the absence of explicit conditional stimuli. J Exp Psychol Anim Behav Process 14:187–199

    Article  PubMed  CAS  Google Scholar 

  • Goldstein BJ, Goodnick PJ (1998) Selective serotonin reuptake inhibitors in the treatment of affective disorders-III. Tolerability, safety and pharmacoeconomics. J Psychopharmacol 12:S55–S87

    PubMed  CAS  Google Scholar 

  • Gorman JM, Liebowitz MR, Fyer AJ, Goetz D, Campeas RB, Fyer MR, Davies SO, Klein DF (1987) An open trial of fluoxetine in the treatment of panic attacks. J Clin Psychopharmacol 7:329–332

    Article  PubMed  CAS  Google Scholar 

  • Gravius A, Pietraszek M, Schafer D, Schmidt WJ, Danysz W (2005) Effects of mGlu1 and mGlu5 receptor antagonists on negatively reinforced learning. Behav Pharmacol 16:113–121

    Article  PubMed  CAS  Google Scholar 

  • Handley SL, Mithani S (1984) Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol 327:1–5

    Article  PubMed  CAS  Google Scholar 

  • Hajszan T, MacLusky NJ, Leranth C (2005) Short-term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus. Eur J Neurosci 21:1299–1303

    Article  PubMed  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  • Ikeda T, Mishima K, Aoo N, Harada K, Liu AX, Egashira N, Iwasaki K, Fujiwara M, Ikenoue T (2006) Rehabilitative training tasks improve spatial learning impairment in the water maze following hypoxic–ischemic insult in neonatal rats. Pediatr Res 59:61–65

    Article  PubMed  Google Scholar 

  • Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H (2004) Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med 10:712–718

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki T, Naito M, Fujisawa K, Maekawa M, Watanabe N, Saito Y, Narumiya S (1997) p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett 404:118–124

    Article  PubMed  CAS  Google Scholar 

  • Kaibuchi K, Kuroda S, Amano M (1999) Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68:459–486

    Article  PubMed  CAS  Google Scholar 

  • Kamei J, Matsunawa Y, Miyata S, Tanaka S, Saitoh A (2004) Effects of nociceptin on the exploratory behavior of mice in the hole-board test. Eur J Pharmacol 489:77–87

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukuta Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–248

    Article  PubMed  CAS  Google Scholar 

  • Lamaze C, Chuamg T-H, Terlecky LJ, Bokoch GM, Schmid SL (1996) Regulation of receptor?mediated endocytosis by Rho and Rac. Nature 382:177–179

    Article  PubMed  CAS  Google Scholar 

  • LeDoux JE (1995) Emotion: clues from the brain. Annu Rev Psychol 46:209–235

    Article  PubMed  CAS  Google Scholar 

  • Machesky LM, Hall A (1996) Rho: a connection between membrane receptor signaling and the cytoskeleton. Trends Cell Biol 6:304–310

    Article  PubMed  CAS  Google Scholar 

  • Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285:895–898

    Article  PubMed  CAS  Google Scholar 

  • Magarinos AM, Deslandes A, McEwen BS (1999) Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur J Pharmacol 371:113–122

    Article  PubMed  CAS  Google Scholar 

  • Masand PS, Gupta S (1999) Selective serotonin-reuptake inhibitors: an update. Harv Rev Psychiatry 7:69–84

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Mervis CB, Sarpal D, Koch P, Steele S, Kohn P, Marenco S, Morris CA, Das S, Kippenhan S, Mattay VS, Weinberger DR, Berman KF (2005) Functional, structural, and metabolic abnormalities of the hippocampal formation in Williams syndrome. J Clin Invest 115:1888–1895

    Article  PubMed  CAS  Google Scholar 

  • Mueller BK, Mack H, Teusch N (2005) Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4:387–398

    Article  PubMed  CAS  Google Scholar 

  • Narumiya S (1996) The small GTPase Rho: cellular functions and signal transduction. J Biochem 120:215–228

    PubMed  CAS  Google Scholar 

  • Nishioka G, Yamada M, Kudo K, Takahashi K, Kiuchi Y, Higuchi T, Momose K, Kamijima K, Yamada M (2003) Induction of kf-1 after repeated electroconvulsive treatment and chronic antidepressant treatment in rat frontal cortex and hippocampus. J Neural Transm 110:277–285

    Article  PubMed  CAS  Google Scholar 

  • Norrholm SD, Ouimet CC (2000) Chronic fluoxetine administration to juvenile rats prevents age-associated dendritic spine proliferation in hippocampus. Brain Res 883:205–215

    Article  PubMed  CAS  Google Scholar 

  • Norrholm SD, Ouimet CC (2001) Altered dendritic spine density in animal models of depression and in response to antidepressant treatment. Synapse 42:151–163

    Article  PubMed  CAS  Google Scholar 

  • Parada-Turska J, Turski WA (1990) Excitatory amino acid antagonists and memory: effect of drugs acting at N-methyl-D-aspartate receptors in learning and memory tasks. Neuropharmacology 29:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  PubMed  CAS  Google Scholar 

  • Rickels K, Rynn M (2002) Pharmacotherapy of generalized anxiety disorder. J Clin Psychiatry 63:9–16

    PubMed  CAS  Google Scholar 

  • Rodriguez Echandia EL, Broitman ST, Foscolo MR (1987) Effect of the chronic ingestion of chlorimipramine and desipramine on the hole board response to acute stresses in male rats. Pharmacol Biochem Behav 26:207–210

    Article  PubMed  CAS  Google Scholar 

  • Saitoh A, Kimura Y, Suzuki T, Kawai K, Nagase H, Kamei J (2004) Potential anxiolytic and antidepressant-like activities of SNC80, a selective delta-opioid agonist, in behavioral models in rodents. J Pharmacol Sci 95:374–380

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Bodewitz G, Stephens DN (1988) Attenuation of scopolamine-induced impairment of spontaneous alteration behaviour by antagonist but not inverse agonist and agonist beta-carbolines. Psychopharmacology 94:491–495

    Article  PubMed  CAS  Google Scholar 

  • Sheehan DV, Raj BA, Trehan RR, Knapp EL (1993) Serotonin in panic disorder and social phobia. Int Clin Psychopharmacol 8:63–77

    Article  PubMed  Google Scholar 

  • Stone WS, Walser B, Gold SD, Gold PE (1991) Scopolamine- and morphine-induced impairments of spontaneous alternation performance in mice: reversal with glucose and with cholinergic and adrenergic agonists. Behav Neurosci 105:264–271

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamada M, Ohata H, Momose K, Higuchi T, Honda K, Yamada M (2005) Expression of Ndrg2 in the rat frontal cortex after antidepressant and electroconvulsive treatment. Int J Neuropsychopharmacol 8:1–9

    Article  Google Scholar 

  • Takeda H, Tsuji M, Matsumiya T (1998) Changes in head-dipping behavior in the hole-board test reflect the anxiogenic and/or anxiolytic state in mice. Eur J Pharmacol 350:21–29

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Yamashita T, Yachi K, Fujiwara T, Yoshikawa H, Tohyama M (2004) Cytoplasmic p21(Cip1/WAF1) enhances axonal regeneration and functional recovery after spinal cord injury in rats. Neuroscience 127:155–164

    Article  PubMed  CAS  Google Scholar 

  • Tapon N, Hall A (1997) Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 9:86–92

    Article  PubMed  CAS  Google Scholar 

  • Tsuji M, Takeda H, Matsumiya T (2000) Different effects of 5-HT1A receptor agonists and benzodiazepine anxiolytics on the emotional state of naive and stressed mice: a study using the hole-board test. Psychopharmacology 152:157–166

    Article  PubMed  CAS  Google Scholar 

  • Tsuji M, Takeda H, Matsumiya T (2001) Protective effects of 5-HT1A receptor agonists against emotional changes produced by stress stimuli are related to their neuroendocrine effects. Br J Pharmacol 134:585–595

    Article  PubMed  CAS  Google Scholar 

  • Udewin O, Yule W (1991) A cognitive and behavioural phenotype in Williams syndrome Journal of Clinical and Experimental. Neuropsychology 13:232–244

    Google Scholar 

  • Van Aelst L, Cline HT (2004) Rho GTPases and activity-dependent dendrite development. Curr Opin Neurobiol 14:297–304

    Article  PubMed  Google Scholar 

  • Van der Kolk BA, Dreyfuss D, Michaels M, Shera D, Berkowitz R, Fisler R, Saxe G (1994) Fluoxetine in posttraumatic stress disorder. J Clin Psychiatry 55:517–522

    PubMed  Google Scholar 

  • Warburton DM, Heise GA (1972) Effects of scopolamine on spatial double alternation in rats. J Comp Physiol Psychol 81:523–532

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Higuchi T (2002) Functional genomics and depression research. Beyond the monoamine hypothesis. Eur Neuropsychopharmacol 12:235–244

    Article  PubMed  Google Scholar 

  • Yamada M, Yamada M, Yamazaki S, Takahashi K, Nishioka G, Kudo K, Ozawa H, Yamada S, Kiuchi Y, Kamijima K, Higuchi T, Momose K (2000) Identification of a novel gene with RING-H2 finger motif induced after chronic antidepressant treatment in rat brain. Biochem Biophys Res Commun 278:150–157

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Yamada M, Yamazaki S, Nara K, Kiuchi Y, Ozawa H, Yamada S, Oguchi K, Kamijima K, Higuchi T, Momose K (2001) Induction of cysteine string protein after chronic antidepressant treatment revealed by ADRG microarray. Neurosci Lett 301:183–186

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Takahashi K, Tsunoda M, Nishioka G, Kudo K, Ohata H, Kamijima K, Higuchi T, Momose K, Yamada M (2002) Differential expression of VAMP2/synaptobrevin-2 after antidepressant and electroconvulsive treatment in rat frontal cortex. Pharmacogenomics J 2:377–382

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Katoh H, Yasui H, Aoki J, Nakamura K, Negishi M (2000) Ga12 and Ga13 inhibit Ca2+-dependent exocytosis through Rho/Rho-associated kinase-dependent pathway. J Neurochem 75:708–717

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Su Y, Li B, Liu F, Ryder JW, Wu X, Gonzalez-DeWhitt PA, Gelfanova V, Hale JE, May PC, Paul SM, Ni B (2003) Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science 302:1215–1217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was, in part, supported by Health Science Research Grants from the Ministry of Health, Labour, and Welfare, the Ministry of Education, Culture, Sports, Science, and Technology, the Japan Society for the Promotion of Science, and the Mitsubishi Pharma Research Foundation. We would like to thank Mr. Takuma Oka and Ms. Maiko Irie for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiko Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saitoh, A., Yamada, M., Yamada, M. et al. ROCK inhibition produces anxiety-related behaviors in mice. Psychopharmacology 188, 1–11 (2006). https://doi.org/10.1007/s00213-006-0466-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0466-4

Keywords

Navigation