Skip to main content
Log in

Differential roles of amygdaloid nuclei in the anxiolytic- and antidepressant-like effects of the V1b receptor antagonist, SSR149415, in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

SSR149415 ((2S, 4R)-1-[5-chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxyphenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2-pyrrolidinecarboxamide), the first selective nonpeptide vasopressin V1b receptor antagonist has been shown to induce antidepressant—and anxiolytic-like effects following systemic administration, whereas intraseptal infusion of the drug engender antidepressant—but not anxiolytic-like effects.

Objectives

Based on recent evidence that V1b receptors are located within the amygdaloid complex, a structure which is well known for its modulatory role of emotional processes, the possible involvement of the different amygdaloid nuclei in the anxiolytic- and/or antidepressant-like effects of SSR149415 was examined.

Methods

Male Sprague-Dawley or Wistar rats were infused with SSR149415 into the central (CeA), the basolateral (BlA), or the medial (MeA) nucleus of the amygdala and tested 10 min after microinjection in the elevated plus-maze or the forced-swimming test, two models typically used for assessing the anxiolytic and antidepressant effects of drugs, respectively.

Results

Microinjection of SSR149415 into the BlA (1–10 ng), but not into the CeA or the MeA, increased the percentage of time spent in the open arms of the elevated plus-maze, indicating anxiolytic-like effects. Furthermore, in the forced-swimming test, microinjection of the drug into the CeA (1, 10, and 100 ng), BlA (1–10 ng), or MeA (100 ng) decreased immobility, an effect which is indicative of an antidepressant-like action. Together, these findings indicate that while the antidepressant-like effects of SSR149415 are mediated by different amygdaloid nuclei, its anxiolytic-like effects appear to involve only the basolateral nucleus of the amygdala. Moreover, these results add further evidence to the role of extrahypothalamic vasopressinergic systems in the control of emotional responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilera G, Rabadan-Diehl C (2000) Vasopressinergic regulation of the hypothalamic–pituitary–adrenal axis: implications for stress adaptation. Regul Pept 96:23–29

    Article  PubMed  CAS  Google Scholar 

  • Andrea LC, Herbert J (1993) Expression of c-fos in restricted areas of intraventricular infusions of vasopressin and corticotropin-releasing factor. Neuroscience 53:735–748

    Article  Google Scholar 

  • Araki H, Kawashima K, Aihara H (1984) The difference in the site of actions of tricyclic antidepressants and methamphetamine on the duration of the immobility in the behavioral despair test. Jpn J Pharmacol 35:67–72

    Google Scholar 

  • Caffé AR, van Leeuwen FW (1983) Vasopressin-immunoreactive cells in the dorsomedial hypothalamic region, medial amygdaloid nucleus and locus coeruleus of the rat. Cell Tissue Res 233:23–33

    Article  PubMed  Google Scholar 

  • Caffé AR, van Leeuwen FW, Luiten PG (1987) Vasopressin cells in the medial amygdala of the rat project to the lateral septum and ventral hippocampus. J Comp Neurol 261:237–252

    Article  PubMed  Google Scholar 

  • Chen X, Herbert J (1995) Alterations in sensitivity to intracerebral vasopressin and the effects of a V1a receptor antagonist on cellular, autonomic and endocrine responses to repeated stress. Neuroscience 64:687–697

    Article  PubMed  CAS  Google Scholar 

  • Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6:13–34

    Article  PubMed  CAS  Google Scholar 

  • De Vries GJ, Buijs RM (1983) The origin of the vasopressinergic and oxytocinergic innervation of the rat brain with special reference to the lateral septum. Brain Res 273:307–317

    Article  PubMed  Google Scholar 

  • Dorsa DM, Petracca FM, Baskin DG, Cornett LE (1984) Localization and characterization of vasopressin-binding sites in the amygdala of the rat brain. J Neurosci 4:1764–1770

    PubMed  CAS  Google Scholar 

  • Drevets W (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive–emotional features of mood disorders. Curr Opin Neurobiol 11:240–249

    Article  PubMed  CAS  Google Scholar 

  • Duncan GE, Breese GR, Criswell H, Stumpf WE, Mueller RA, Covey JB (1986) Effects of antidepressant drugs injected into the amygdala on behavioral responses of rats in the forced swim test. J Pharmacol Exp Ther 238:758–762

    PubMed  CAS  Google Scholar 

  • Duncan GE, Johnson KB, Breese GR (1993) Topographic patterns of brain activity in response to swim stress: assessment by 2-deoxyglucose uptake and expression of Fos-like immunoreactivity. J Neurosci 13:3932–3943

    PubMed  CAS  Google Scholar 

  • Duxon MS, Beckett SRG, Baxter GS, Blackburn TP, Fone (1995) Intra-amygdala injection of the 5-HT2B receptor agonist BW 723C86 produces anxiolysis on the elevated plus-maze in the rat. Br J Pharmacol 115:105P

    Google Scholar 

  • Duxon MS, Kennett GA, Lightowler S, Blackburn TP (1997) Activation of 5-HT2B receptors in the medial amygdala causes anxiolysis in the social interaction test in the rat. Neuropharmacology 36:601–608

    Article  PubMed  CAS  Google Scholar 

  • Ebner K, Wotjak CT, Holsboer F, Landgraf R, Engelmann M (1999) Vasopressin released within the septal brain area during swim stress modulates the behavioural stress response in rats. Eur J Neurosci 11:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Ebner K, Wotjak CT, Landgraf R, Engelmann M (2002) Forced swimming triggers vasopressin release within the amygdala to modulate stress-coping strategies in rats. Eur J Neurosci 15:384–388

    Article  PubMed  Google Scholar 

  • Ebner K, Rupniak NM, Saria A, Singewald N (2004) Substance P in the medial amygdala: emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proc Natl Acad Sci USA 23:4280–4285

    Article  Google Scholar 

  • Gonzalez LE, Andrews N, File SE (1996) 5-HT1A and benzodiazepine receptors in the basolateral amygdala modulate anxiety in the social interaction test, but not in the elevated plus-maze. Brain Res 732:145–153

    Article  PubMed  CAS  Google Scholar 

  • Gorka Z, Ossowska K, Stach R (1979) The effect of unilateral amygdala lesion on the imipramine action in the behavioral despair in rats. J Pharm Pharmacol 31:647–648

    PubMed  CAS  Google Scholar 

  • Green S, Vale AL (1992) Role of amygdaloid nuclei in the anxiolytic effects of benzodiazepines in rats. Behav Pharmacol 3:261–264

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B et al (2002) Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci USA 99:6370–6375

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Simiand J, Stemmelin J, Serradeil-Le Gal C, Steinberg R (2003) The vasopressin V1b receptor as a therapeutic target in stress-related disorders. Curr Drug Target CNS Neurol Disord 2:191–200

    Article  CAS  Google Scholar 

  • Hasting RS, Parsey RV, Oquendo MA, Arango V, Mann JJ (2004) Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology 29:952–959

    Article  Google Scholar 

  • Hernando F, Schoots O, Lolait SJ, Burbach JP (2001) Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology 142:1659–1668

    Article  PubMed  CAS  Google Scholar 

  • Ho Y, Liu T, Tai M, Wen Z, Chow RS, Tsai Y, Wong C (2001) Effects of olfactory bulbectomy on NMDA receptor density in the rat brain. Brain Res 900:214–218

    Article  PubMed  CAS  Google Scholar 

  • Huber D, Veinante P, Stoop R (2005) Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308:245–248

    Article  PubMed  CAS  Google Scholar 

  • Kataoka Y, Shibata Z, Yamashita K, Ueki S (1987) Differential mechanisms involved in the anticonflict action of benzodiazepines injected into the central amygdala and mamillary body. Brain Res 416:243–247

    Article  PubMed  CAS  Google Scholar 

  • Killcross S, Robbins TW, Everitt BJ (1997) Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature 388:377–380

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R, Gerstberger R, Montkowski A, Probst JC, Wotjak CT, Holsboer F et al (1995) V1 vasopressin receptor antisense oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination abilities, and anxiety-related behavior in rats. J Neurosci 15:4250–4258

    PubMed  CAS  Google Scholar 

  • Massana G, Serra-Grabulosa JM, Salgado-Pineda P, Gasto C, Junque C, Massana J, Mercader JM, Gomez B, Tobena A, Salamero M (2003) Amygdalar atrophy in panic disorder patients detected by volumetric magnetic resonance imaging. Neuroimage 19:80–90

    PubMed  Google Scholar 

  • Menard J, Treit D (1999) Effects of centrally administered anxiolytic compounds in animal models of anxiety. Neurosci Biobehav Rev 23:591–613

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson W (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, London

    Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  PubMed  CAS  Google Scholar 

  • Pesold C, Treit D (1995) The central and basolateral amygdala differentially mediate the anxiolytic effects of benzodiazepines. Brain Res 671:213–221

    Article  PubMed  CAS  Google Scholar 

  • Porsolt R, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  PubMed  CAS  Google Scholar 

  • Rabadan-Diehl C, Makara G, Kiss A, Lolait S, Zelena D, Ochedalski T et al (1997) Regulation of pituitary V1b vasopressin receptor messenger ribonucleic acid by adrenalectomy and glucocorticoid administration. Endocrinology 138:5189–5194

    Article  PubMed  CAS  Google Scholar 

  • Rutkoski NJ, Lerant AA, Nolte CM, Westberry J, Levenson CW (2002) Regulation of neuropeptide Y in the rat amygdala following unilateral olfactory bulbectomy. Brain Res 951:69–76

    Article  PubMed  CAS  Google Scholar 

  • Salchner P, Singewald N (2002) Neuroanatomical substrates involved in the anxiogenic-like effect of acute fluoxetine treatment. Neuropharmacology 43:1238–1248

    Article  PubMed  CAS  Google Scholar 

  • Serradeil-Le Gal C, Wagnon J, Simiand J, Griebel G, Lacour C, Guillon G et al (2002) Characterization of (2S,4R)-1-[5-chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2-pyrrolidine carboxamide (SSR149415), a selective and orally active vasopressin V1b receptor antagonist. J Pharmacol Exp Ther 300:1122–1130

    Article  PubMed  CAS  Google Scholar 

  • Sheline Y, Gado MH, Price JL (1998) Amygdala core nuclei volumes are decreased in recurrent major depression. J Neurosci 22:3251–3261

    Google Scholar 

  • Shibata S, Watanabe S (1994) Facilitatory effect of olfactory bulbectomy on 2-deoxyglucose uptake in rat amygdala slices. Brain Res 665:147–150

    Article  PubMed  CAS  Google Scholar 

  • Shibata K, Kataoka Y, Gomita Y, Ueki S (1982) Localization of the site of the anticonflict action of benzodiazepines in the amygdaloid nucleus of rats. Brain Res 234:442–446

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew MV (1985) Vasopressin- and neurophysin-immunoreactive neurons in the septal region, medial amygdala and locus coeruleus in colchicine-treated rats. Neuroscience 15:347–358

    Article  PubMed  CAS  Google Scholar 

  • Stemmelin J, Lukovic L, Salome N, Griebel G (2005) Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR149415. Neuropsychopharmacology 30:35–42

    Article  PubMed  CAS  Google Scholar 

  • Tanoue A, Ito S, Honda K, Oshikawa S, Kitagawa Y, Koshimizu TA, Mori T, Tsujimoto G (2004) The vasopressin V1b receptor critically regulates hypothalamic–pituitary–adrenal axis activity under both stress and resting conditions. J Clin Invest 113:302–309

    PubMed  CAS  Google Scholar 

  • Veinante P, Freund-Mercier (1997) Distribution of oxytocin- and vasopressin-binding sites in the rat extended amygdala: a histoautoradiographic study. J Comp Neurol 38:305–325

    Article  Google Scholar 

  • Wilensky AE, Schafe GE, LeDoux JE (2000) The amygdala modulates memory consolidation of fear-motivated inhibitory avoidance learning but not classical fear conditioning. J Neurosci 20:7059–7066

    PubMed  CAS  Google Scholar 

  • Wu PH, Lança AJ, Liu JF, Man CF, Kalant H (1995) Peripheral injection of arginine8-vasopressin increases Fos in specific brain areas. Eur J Pharmacol 281:263–269

    Article  PubMed  CAS  Google Scholar 

  • Wrynn AS, Sebens JB, Koch T, Leonard BE, Korf J (2000) Prolonged c-Jun expression in the basolateral amygdala following bulbectomy: possible implications for antidepressant activity and time of onset. Brain Res Mol Brain Res 76:7–17

    Article  PubMed  CAS  Google Scholar 

  • Zangrossi H, Graeff FG (1994) Behavioral effects of intra-amygdala injections of GABA and 5-HT acting drug in the elevated plus maze. Braz J Med Biol Res 27:2453–2456

    CAS  Google Scholar 

  • Zangrossi Jr H, Viana MB, Graeff FG (1999) Anxiolytic effect of intra-amygdala injection of midazolam and 8-hydroxy-2-(di-n-propylamino)tetralin in the elevated T-maze. Eur J Pharmacol 369:267–270

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salomé, N., Stemmelin, J., Cohen, C. et al. Differential roles of amygdaloid nuclei in the anxiolytic- and antidepressant-like effects of the V1b receptor antagonist, SSR149415, in rats. Psychopharmacology 187, 237–244 (2006). https://doi.org/10.1007/s00213-006-0424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0424-1

Keywords

Navigation