Skip to main content
Log in

The signal attenuation rat model of obsessive–compulsive disorder: a review

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

During the last 30 years, there have been many attempts to develop animal models of obsessive–compulsive disorder (OCD), in the hope that they may provide a route for furthering our understanding and treatment of this disorder. The present paper reviews a recently developed rat model of OCD, namely, signal attenuation. Results of pharmacological and lesion studies are presented and evaluated with respect to the pharmacology and pathophysiology of OCD. It is argued that signal attenuation is a rat model of OCD with construct (derived from similarity in the underlying mechanisms), predictive (derived from similarity in response to treatment), and face (derived from phenomenological similarity between “compulsive” behavior in the model and compulsions in OCD patients) validity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agid O, Kapur S, Arenovich T, Zipursky RB (2003) Delayed-onset hypothesis of antipsychotic action: a hypothesis tested and rejected. Arch Gen Psychiatry 60:1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Altemus M, Glowa JR, Galliven E, Leong YM, Murphy DL (1996) Effects of serotonergic agents on food-restriction-induced hyperactivity. Pharmacol Biochem Behav 53:123–131

    Article  PubMed  CAS  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric, Washington, DC

    Google Scholar 

  • Argyropoulos SV, Sandford JJ, Nutt DJ (2000) The psychobiology of anxiolytic drug. Part 2: pharmacological treatments of anxiety. Pharmacol Ther 88:213–227

    Article  PubMed  CAS  Google Scholar 

  • Baxter LR (1999) Functional imaging of brain systems mediating obsessive–compulsive disorder. In: Nestler CE, Bunney W (eds) Neurobiology of mental illness. Oxford University Press, New York, pp 534–547

    Google Scholar 

  • Baxter LR Jr, Phelps ME, Mazziotta JC, Guze BH, Schwartz JM, Selin CE (1987) Local cerebral glucose metabolic rates in obsessive–compulsive disorder. A comparison with rates in unipolar depression and in normal controls. Arch Gen Psychiatry 44:211–218

    PubMed  Google Scholar 

  • Baxter LR Jr, Schwartz JM, Mazziotta JC, Phelps ME, Pahl JJ, Guze BH, Fairbanks L (1988) Cerebral glucose metabolic rates in nondepressed patients with obsessive–compulsive disorder. Am J Psychiatry 145:1560–1563

    PubMed  Google Scholar 

  • Baxter LR Jr., Schwartz JM, Bergman KS et al (1992) Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder. Arch Gen Psychiatry 49:681–689

    PubMed  CAS  Google Scholar 

  • Baxter MG, Parker A, Lindner CC, Izquierdo AD, Murray EA (2000) Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J Neurosci 20:4311–4319

    PubMed  CAS  Google Scholar 

  • Benkelfat C, Nordahl TE, Semple WE, King AC, Murphy DL, Cohen RM (1990) Local cerebral glucose metabolic rates in obsessive–compulsive disorder. Patients treated with clomipramine. Arch Gen Psychiatry 47:840–848

    PubMed  CAS  Google Scholar 

  • Berridge KC, Aldridge JW, Houchard KR, Zhuang X (2004) Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette’s. BMC Biol 3:1–16

    Google Scholar 

  • Berthier ML, Kulisevsky J, Gironell A, Heras JA (1996) Obsessive–compulsive disorder associated with brain lesions: clinical phenomenology, cognitive function, and anatomic correlates. Neurology 47:353–361

    PubMed  CAS  Google Scholar 

  • Bourin M, Fiocco AJ, Clenet F (2001) How valuable are animal models in defining antidepressant activity? Hum Psychopharmacol 16:9–21

    Article  PubMed  CAS  Google Scholar 

  • Breiter HC, Rauch SL (1996) Functional MRI and the study of OCD: from symptom provocation to cognitive–behavioral probes of cortico-striatal systems and the amygdala. Neuroimage 4:S127–S138

    Article  PubMed  CAS  Google Scholar 

  • Breiter HC, Rauch SL, Kwong KK, Baker JR, Weisskoff RM, Kennedy DN, Kendrick AD, Davis TL, Jiang A, Cohen MS, Stern CE, Belliveau JW, Baer L, O’Sullivan RL, Savage CR, Jenike MA, Rosen BR (1996) Functional magnetic resonance imaging of symptom provocation in obsessive–compulsive disorder. Arch Gen Psychiatry 53:595–606

    PubMed  CAS  Google Scholar 

  • Brody AL, Saxena S, Schwartz JM, Stoessel PW, Maidment K, Phelps ME, Baxter LR Jr (1998) FDG-PET predictors of response to behavioral therapy and pharmacotherapy in obsessive compulsive disorder. Psychiatry Res 84:1–6

    PubMed  CAS  Google Scholar 

  • Broekkamp CL, Jenck F (1989) The relationship between various animal models of anxiety, fear-related psychiatric symptoms and response to serotonergic drugs. In: Bevan P, Cools R, Archer T (eds) Behavioural pharmacology of 5–HT. Erlbaum, Hillsdale, pp 321–335

    Google Scholar 

  • Broekkamp CL, Rijk HW, Joly-Gelouin D, Lloyd KL (1986) Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice. Eur J Pharmacol 126:223–229

    Article  PubMed  CAS  Google Scholar 

  • Brutkowski S (1964) Prefrontal cortex and drive inhibition. In: Warren JM, Akert K (eds) The frontal granular cortex and behavior. McGraw-Hill, New York, pp 242–294

    Google Scholar 

  • Cador M, Robbins TW, Everitt BJ (1989) Involvement of the amygdala in stimulus–reward associations: interaction with the ventral striatum. Neuroscience 30:77–86

    Article  PubMed  CAS  Google Scholar 

  • Campbell KM, de Lecea L, Severynse DM, Caron MG, McGrath MJ, Sparber SB, Sun LY, Burton FH (1999a) OCD-like behaviors caused by a neuropotentiating transgene targeted to cortical and limbic D1+ neurons. J Neurosci 19:5044–5053

    PubMed  CAS  Google Scholar 

  • Campbell KM, McGrath MJ, Burton FH (1999b) Differential response of cortical–limbic neuropotentiated compulsive mice to dopamine D1 and D2 receptor antagonists. Eur J Pharmacol 371:103–111

    Article  PubMed  CAS  Google Scholar 

  • Campbell KM, McGrath MJ, Burton FH (1999c) Behavioral effects of cocaine on a transgenic mouse model of cortical–limbic compulsion. Brain Res 833:216–224

    Article  PubMed  CAS  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  PubMed  Google Scholar 

  • Cassano GB, Carrara S, Castrogiovanni P (1975) Bromazepam versus diazepam in psychoneurotic inpatients. Pharmakopsychiatr Neuropsychopharmakol 8:1–7

    PubMed  CAS  Google Scholar 

  • Chudasama Y, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW (2003) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 146:105–119

    Article  PubMed  CAS  Google Scholar 

  • Choi JS, Kang DH, Kim JJ, Ha TH, Lee JM, Youn T, Kim IY, Kim SI, Kwon JS (2004) Left anterior subregion of orbitofrontal cortex volume reduction and impaired organizational strategies in obsessive–compulsive disorder. J Psychiatr Res 38:193–199

    Article  PubMed  Google Scholar 

  • Chou-Green JM, Holscher TD, Dallman MF, Akana SF (2003) Compulsive behavior in the 5-HT2C receptor knockout mouse. Physiol Behav 78:641–649

    Article  PubMed  CAS  Google Scholar 

  • Cottraux J, Gerard D, Cinotti L, Froment JC, Deiber MP, Le Bars D, Galy G, Millet P, Labbe C, Lavenne F, Bouvard M, Mauguiere F (1996) A controlled positron emission tomography study of obsessive and neutral auditory stimulation in obsessive–compulsive disorder with checking rituals. Psychiatry Res 60:101–112

    Article  PubMed  CAS  Google Scholar 

  • Cousens GA, Otto T (2003) Neural substrates of olfactory discrimination learning with auditory secondary reinforcement. I. Contributions of the basolateral amygdaloid complex and orbitofrontal cortex. Integr Physiol Behav Sci 38:272–294

    PubMed  Google Scholar 

  • Cowie S, Quintero S, McNaughton N (1987) Home cage and test apparatus artefacts in assessing behavioral effects of diazepam in rats. Psychopharmacology (Berl) 91:257–259

    CAS  Google Scholar 

  • Creese I, Chen A (1985) Selective D-1 dopamine receptor increase following chronic treatment with SCH 23390. Eur J Pharmacol 109:127–128

    Article  PubMed  CAS  Google Scholar 

  • Dickinson A, Balleine B (2002) The role of learning in motivation. In: Gallistel CR (ed) Learning, motivation & emotion. Wiley, New York, pp 497–533

    Google Scholar 

  • Eilam D, Szechtman H (1995) Towards an animal model of obsessive–compulsive disorder (OCD): sensitization to dopamine agonist quinpirole. Soc Neurosci Abstr 21:192

    Google Scholar 

  • Everitt B, Robbins TW (1992) Amygdala-ventral striatal interactions and reward-related processes. In: Aggleton J (ed) The amygdala. Neurobiological aspects of emotion, memory and mental dysfunction. Wiley, Oxford, pp 401–429

    Google Scholar 

  • Everitt BJ, Cador M, Robbins TW (1989) Interactions between the amygdala and ventral striatum in stimulus–reward associations: studies using a second-order schedule of sexual reinforcement. Neuroscience 30:63–75

    Article  PubMed  CAS  Google Scholar 

  • Feldon J, Gray JA (1981) The partial reinforcement extinction effect after treatment with chlordiazepoxide. Psychopharmacology (Berl) 73:269–275

    Article  CAS  Google Scholar 

  • Fernandez-Guasti A, Ulloa RE, Nicolini H (2003) Age differences in the sensitivity to clomipramine in an animal model of obsessive–compulsive disorder. Psychopharmacology (Berl) 166:195–201

    CAS  Google Scholar 

  • Gallagher M, Schoenbaum G (1999) Functions of the amygdala and related forebrain areas in attention and cognition. Ann N Y Acad Sci 877:397–411

    Article  PubMed  CAS  Google Scholar 

  • Gallagher M, McMahan RW, Schoenbaum G (1999) Orbitofrontal cortex and representation of incentive value in associative learning. J Neurosci 19:6610–6614

    PubMed  CAS  Google Scholar 

  • Garner JP, Weisker SM, Dufour B, Mench JA (2004a) Barbering (fur and whisker trimming) by laboratory mice as a model of human trichotillomania and obsessive–compulsive spectrum disorders. Comp Med 54:216–224

    PubMed  CAS  Google Scholar 

  • Garner JP, Dufour B, Gregg LE, Weisker SM, Mench JA (2004b) Social and husbandry factors affecting the prevalence and severity of barbering (‘whisker trimming’) by laboratory mice. Appl Anim Behav Sci 89:263–282

    Article  Google Scholar 

  • Geyer MA, Markou A (2002) The role of preclinical models in the development of psychotropic drugs. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams & Wilkins, Philadelphia, pp 445–455

    Google Scholar 

  • Giorgi O, Pibiri MG, Loi R, Corda MG (1993) Chronic treatment with SCH 23390 increases the production rate of dopamine D1 receptors in the nigro-striatal system of the rat. Eur J Pharmacol 245:139–145

    Article  PubMed  CAS  Google Scholar 

  • Goodman WK, Price LH, Delgado PL, Palumbo J, Krystal JH, Nagy LM, Rasmussen SA, Heninger GR, Charney DS (1990) Specificity of serotonin reuptake inhibitors in the treatment of obsessive–compulsive disorder. Comparison of fluvoxamine and desipramine. Arch Gen Psychiatry 47:577–585

    PubMed  CAS  Google Scholar 

  • Gray JA (1982) The neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system. Oxford University Press, New York

    Google Scholar 

  • Gray JA, McNaughton N (2000) The neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system. Oxford University Press, New York

    Google Scholar 

  • Greer JM, Capecchi MR (2002) Hoxb8 is required for normal grooming behavior in mice. Neuron 33:23–34

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Uylings HB (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog Brain Res 126:3–28

    PubMed  CAS  Google Scholar 

  • Gyertyan I (1995) Analysis of the marble burying response: marbles serve to measure digging rather than evoke burying. Behav Pharmacol 6:24–31

    PubMed  Google Scholar 

  • Halevy G, Feldon J, Weiner I (1986) The effects of clonidine on the partial reinforcement extinction effect (PREE). Psychopharmacology (Berl) 90:95–100

    CAS  Google Scholar 

  • Hatfield T, Han JS, Conley M, Gallagher M, Holland P (1996) Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J Neurosci 16:5256–5265

    PubMed  CAS  Google Scholar 

  • Hess EJ, Albers LJ, Le H, Creese I (1986) Effects of chronic SCH23390 treatment on the biochemical and behavioral properties of D1 and D2 dopamine receptors: potentiated behavioral responses to a D2 dopamine agonist after selective D1 dopamine receptor upregulation. J Pharmacol Exp Ther 238:846–854

    PubMed  CAS  Google Scholar 

  • Hess EJ, Norman AB, Creese I (1988) Chronic treatment with dopamine receptor antagonists: behavioral and pharmacologic effects on D1 and D2 dopamine receptors. J Neurosci 8:2361–2370

    PubMed  CAS  Google Scholar 

  • Hoehn-Saric R, Ninan P, Black DW, Stahl S, Greist JH, Lydiard B, McElroy S, Zajecka J, Chapman D, Clary C, Harrison W (2000) Multicenter double-blind comparison of sertraline and desipramine for concurrent obsessive–compulsive and major depressive disorders. Arch Gen Psychiatry 57:76–82

    Article  PubMed  CAS  Google Scholar 

  • Holland PC, Gallagher M (1999) Amygdala circuitry in attentional and representational processes. Trends Cogn Sci 3:65–73

    Article  PubMed  Google Scholar 

  • Horwitz B, Swedo SE, Grady CL, Pietrini P, Schapiro MB, Rapoport JL, Rapoport SI (1991) Cerebral metabolic pattern in obsessive–compulsive disorder: altered intercorrelations between regional rates of glucose utilization. Psychiatry Res 40:221–237

    PubMed  CAS  Google Scholar 

  • Hugo F, van Heerden B, Zungu-Dirwayi N, Stein DJ (1999) Functional brain imaging in obsessive–compulsive disorder secondary to neurological lesions. Depress Anxiety 10:129–136

    Article  PubMed  CAS  Google Scholar 

  • Insel TR (1992) Toward a neuroanatomy of obsessive–compulsive disorder. Arch Gen Psychiatry 49:739–744

    PubMed  CAS  Google Scholar 

  • Insel TR, Mos J, Olivier B (1994) Animal models of obsessive compulsive disorder: A review. In: Hollander E, Zohar J, Marazzitti D, Olivier B (eds) Current insights in obsessive compulsive disorder. John Wiley & Sons, Chichester pp. 117–135

    PubMed  CAS  Google Scholar 

  • Izquierdo A, Suda RK, Murray EA (2004) Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J Neurosci 24:7540–7548

    PubMed  CAS  Google Scholar 

  • Joel D (2006) Current animal models of obsessive compulsive disorder: a critical review. Prog Neuropsychopharmacol Biol Psychiatry (in press)

  • Joel D, Avisar A (2001) Excessive lever pressing following post-training signal attenuation in rats: a possible animal model of obsessive compulsive disorder? Behav Brain Res 123:77–87

    Article  PubMed  CAS  Google Scholar 

  • Joel D, Doljansky J (2003) Selective alleviation of ‘compulsive’ lever-pressing in rats by D1, but not D2, blockade: possible implications for the involvement of D1 receptors in obsessive compulsive disorder. Neuropsychopharmacology 28:77–85

    Article  PubMed  CAS  Google Scholar 

  • Joel D, Avisar A, Doljansky J (2001) Enhancement of excessive lever-pressing after post-training signal attenuation in rats by repeated administration of the D1 antagonist SCH 23390 or the D2 agonist quinpirole but not of the D1 agonist SKF 38393 or the D2 antagonist haloperidol. Behav Neurosci 115:1291–1300

    Article  PubMed  CAS  Google Scholar 

  • Joel D, Ben-Amir E, Doljansky J, Flaisher S (2004) ‘Compulsive’ lever-pressing in rats is attenuated by the serotonin re-uptake inhibitors paroxetine and fluvoxamine but not by the tricyclic antidepressant desipramine or the anxiolytic diazepam. Behav Pharmacol 15:241–252

    PubMed  CAS  Google Scholar 

  • Joel D, Doljansky J, Roz N, Rehavi M (2005a) Role of the orbital cortex and the serotonergic system in a rat model of obsessive compulsive disorder. Neuroscience 130:25–36

    Article  PubMed  CAS  Google Scholar 

  • Joel D, Doljansky J, Schiller D (2005b) ‘Compulsive’ lever pressing in rats is enhanced following lesions to the orbital cortex, but not to the basolateral nucleus of the amygdala or to the dorsal medial prefrontal cortex. Eur J Neurosci 21:2252–2262

    Article  PubMed  Google Scholar 

  • Joel D, Klavir O (in press) The effects of temporary inactivation of the orbital cortex in the signal attenuation rat model of obsessive compulsive disorder. Behav Neurosci

  • Kelleher RT, Morse WH (1968) Determinants of the specificity of behavioral effects of drugs. Ergeb Physiol 60:1–56

    PubMed  CAS  Google Scholar 

  • Kesner P (2000) Subregional analysis of mnemonic functions of the prefrontal cortex in the rat. Psychobiology 28:219–228

    Google Scholar 

  • Kikusui T, Takeuchi Y, Mori Y (2001) Pharmacological manipulations of the extinction process of fear-induced ultrasonic vocalization in rats. J Vet Med Sci 63:591–595

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Ragozzino ME (2005) The involvement of the orbitofrontal cortex in learning under changing task contingencies. Neurobiol Learn Mem 83:125–133

    Article  PubMed  Google Scholar 

  • Kim SW, Dysken MW, Kushner MG, Kuskowski MA, Hoover KM, Klein KW, Faris PL, Hartman BK (1997) Phenomenological and pharmacological study of provoked obsessive/anxiety symptoms in obsessive–compulsive disorder: a preliminary study. Biol Psychiatry 42:969–975

    Article  PubMed  CAS  Google Scholar 

  • Kolb B, Nonneman AJ, Singh RK (1974) Double dissociation of spatial impairments and perseveration following selective prefrontal lesions in rats. J Comp Physiol Psychol 87:772–780

    PubMed  CAS  Google Scholar 

  • Konorski J (1972) Some hypotheses concerning the functional organization of the prefrontal cortex. Acta Neurobiol Exp (Wars) 32:595–613

    CAS  Google Scholar 

  • Kwon JS, Kim JJ, Lee DW, Lee JS, Lee DS, Kim MS, Lyoo IK, Cho MJ, Lee MC (2003) Neural correlates of clinical symptoms and cognitive dysfunctions in obsessive–compulsive disorder. Psychiatry Res 122:37–47

    PubMed  Google Scholar 

  • Lappalainen J, Hietala J, Pohjalainen T, Syvalahti E (1992) Regulation of dopamine D1 receptors by chronic administration of structurally different D1 receptor antagonists: a quantitative autoradiographic study. Eur J Pharmacol 210:195–200

    Article  PubMed  CAS  Google Scholar 

  • Leonard HL, Rapoport JL (1989) Pharmacotherapy of childhood obsessive–compulsive disorder. Psychiatr Clin North Am 12:963–970

    PubMed  CAS  Google Scholar 

  • Leonard HL, Swedo SE, Rapoport JL, Koby EV, Lenane MC, Cheslow DL, Hamburger SD (1989) Treatment of obsessive–compulsive disorder with clomipramine and desipramine in children and adolescents. A double-blind crossover comparison. Arch Gen Psychiatry 46:1088–1092

    PubMed  CAS  Google Scholar 

  • Londei T, Valentini AM, Leone VG (1998) Investigative burying by laboratory mice may involve non-functional, compulsive behaviour. Behav Brain Res 94:249–254

    Article  PubMed  CAS  Google Scholar 

  • Mackintosh NJ (1974) The psychology of animal learning. Academic, New York

    Google Scholar 

  • Malloy P (1987) Frontal lobe dysfunction in obsessive compulsive disorder. In: Perecman E (ed) The frontal lobes revisited. IRBN, New York

    Google Scholar 

  • Man J, Hudson AL, Ashton D, Nutt DJ (2004) Animal models of obsessive compulsive disorder. Curr Neuropharmacol 2:1–7

    Article  Google Scholar 

  • Manning FJ, McDonough JH Jr (1974) Reinforcement omission, non-contingent reinforcement, and limbic lesions in rats. Behav Biol 11:327–338

    Article  PubMed  CAS  Google Scholar 

  • Masand PS, Gupta S (1999) Selective serotonin-reuptake inhibitors: an update. Harv Rev Psychiatry 7:69–84

    Article  PubMed  CAS  Google Scholar 

  • Matthysse S (1986) Animal models in psychiatric research. Prog Brain Res 65:259–270

    PubMed  CAS  Google Scholar 

  • McDougle CJ, Goodman WK, Price LH, Delgado PL, Krystal JH, Charney DS, Heninger GR (1990) Neuroleptic addition in fluvoxamine-refractory obsessive–compulsive disorder. Am J Psychiatry 147:652–654

    PubMed  CAS  Google Scholar 

  • McDougle CJ, Goodman WK, Leckman JF, Lee NC, Heninger GR, Price LH (1994) Haloperidol addition in fluvoxamine-refractory obsessive–compulsive disorder. A double-blind, placebo-controlled study in patients with and without tics. Arch Gen Psychiatry 51:302–308

    PubMed  CAS  Google Scholar 

  • McGrath MJ, Campbell KM, Veldman MB, Burton FH (1999a) Anxiety in a transgenic mouse model of cortical–limbic neuro-potentiated compulsive behavior. Behav Pharmacol 10:435–443

    PubMed  CAS  Google Scholar 

  • McGrath MJ, Campbell KM, Burton FH (1999b) The role of cognitive and affective processing in a transgenic mouse model of cortical–limbic neuropotentiated compulsive behavior. Behav Neurosci 113:1249–1256

    Article  PubMed  CAS  Google Scholar 

  • McGuire PK, Bench CJ, Frith CD, Marks IM, Frackowiak RS, Dolan RJ (1994) Functional anatomy of obsessive–compulsive phenomena. Br J Psychiatry 164:459–468

    PubMed  CAS  Google Scholar 

  • McKinney WT Jr (1988) Models of mental disorders. a new comparative psychiatry. Plenum, New York

    Google Scholar 

  • McNaughton N (1984) Effects of anxiolytic drugs on the partial reinforcement extinction effect in runway and Skinner box. Q J Exp Psychol B 36:319–330

    PubMed  CAS  Google Scholar 

  • Memo M, Pizzi M, Nisoli E, Missale C, Carruba MO, Spano P (1987) Repeated administration of (−)sulpiride and SCH 23390 differentially up-regulate D-1 and D-2 dopamine receptor function in rat mesostriatal areas but not in cortical–limbic brain regions. Eur J Pharmacol 138:45–51

    Article  PubMed  CAS  Google Scholar 

  • Montgomery SA (1993) Obsessive compulsive disorder is not an anxiety disorder. Int Clin Psychopharmacol 8(Suppl 1):57–62

    Article  PubMed  Google Scholar 

  • Njung’e K, Handley SL (1991) Evaluation of marble-burying behavior as a model of anxiety. Pharmacol Biochem Behav 38:63–67

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom EJ, Burton FH (2002) A transgenic model of comorbid Tourette’s syndrome and obsessive–compulsive disorder circuitry. Mol Psychiatry 7:617–625, 524

    Article  PubMed  CAS  Google Scholar 

  • Nurnberg HG, Keith SJ, Paxton DM (1997) Consideration of the relevance of ethological animal models for human repetitive behavioral spectrum disorders. Biol Psychiatry 41:226–229

    Article  PubMed  CAS  Google Scholar 

  • O’Boyle KM, Gavin KT, Harrison N (1993) Chronic antagonist treatment does not alter the mode of interaction of dopamine with rat striatal dopamine receptors. J Recept Res 13:329–339

    PubMed  CAS  Google Scholar 

  • Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219

    Article  PubMed  CAS  Google Scholar 

  • Ostlund SB, Balleine BB (2005) Lesions of the orbitofrontal cortex disrupt pavlovian, but not instrumental, outcome-encoding. Society for Neuroscience: Program No. 71.20

  • Otto MW (1992) Normal and abnormal information processing: a neuropsychological perspective on obsessive–compulsive disorder. In: Jenike MA (ed) The psychiatric clinics of North America. Obsessional disorders. Saunders, Harcourt Brace Jovanovich, Chicago, pp 825–848

    Google Scholar 

  • Parkinson JA, Crofts HS, McGuigan M, Tomic DL, Everitt BJ, Roberts AC (2001) The role of the primate amygdala in conditioned reinforcement. J Neurosci 21:7770–7780

    PubMed  CAS  Google Scholar 

  • Pears A, Parkinson JA, Hopewell L, Everitt BJ, Roberts AC (2003) Lesions of the orbitofrontal but not medial prefrontal cortex disrupt conditioned reinforcement in primates. J Neurosci 23:11189–11201

    PubMed  CAS  Google Scholar 

  • Piccinelli M, Pini S, Bellantuono C, Wilkinson G (1995) Efficacy of drug treatment in obsessive–compulsive disorder. A meta-analytic review. Br J Psychiatry 166:424–443

    Article  PubMed  CAS  Google Scholar 

  • Pickens CL, Saddoris MP, Setlow B, Gallagher M, Holland PC, Schoenbaum G (2003) Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. J Neurosci 23:11078–11084

    PubMed  CAS  Google Scholar 

  • Pickens CL, Saddoris MP, Gallagher M, Holland PC (2005) Orbitofrontal lesions impair use of cue–outcome associations in a devaluation task. Behav Neurosci 119:317–322

    Article  PubMed  Google Scholar 

  • Pigott TA, Seay SM (1999) A review of the efficacy of selective serotonin reuptake inhibitors in obsessive–compulsive disorder. J Clin Psychiatry 60:101–106

    PubMed  CAS  Google Scholar 

  • Pitman RK (1989) Animal models of compulsive behavior. Biol Psychiatry 26:189–198

    Article  PubMed  CAS  Google Scholar 

  • Pitman R (1991) Historical considerations. In: Zohar J, Insel T, Rasmussen S (eds) The psychobiology of obsessive–compulsive disorder. Springer, Berlin Heidelberg New York, pp 1–12

    Google Scholar 

  • Pitman RK, Green RC, Jenike MA, Mesulam MM (1987) Clinical comparison of Tourette’s disorder and obsessive–compulsive disorder. Am J Psychiatry 144:1166–1171

    PubMed  CAS  Google Scholar 

  • Porceddu ML, Ongini E, Biggio G (1985) [3H]SCH 23390 binding sites increase after chronic blockade of D-1 dopamine receptors. Eur J Pharmacol 118:367–370

    PubMed  CAS  Google Scholar 

  • Pujol J, Soriano-Mas C, Alonso P, Cardoner N, Menchon JM, Deus J, Vallejo J (2004) Mapping structural brain alterations in obsessive–compulsive disorder. Arch Gen Psychiatry 61:720–730

    Article  PubMed  Google Scholar 

  • Rapoport JL (1989) The biology of obsessions and compulsions (see comments). Sci Am 260:82–89

    Article  PubMed  CAS  Google Scholar 

  • Rapoport JL, Ryland DH, Kriete M (1992) Drug treatment of canine acral lick. An animal model of obsessive–compulsive disorder. Arch Gen Psychiatry 49:517–521

    PubMed  CAS  Google Scholar 

  • Rasmussen SA, Eisen JL (1992) The epidemiological and clinical features of obsessive–compulsive disorder. In: Jenike MA (ed) The psychiatric clinics of North America. Obsessional disorders. Saunders, Harcourt Brace Jovanovich, Chicago, pp 743–758

    Google Scholar 

  • Rauch SL, Jenike MA, Alpert NM, Baer L, Breiter HC, Savage CR, Fischman AJ (1994) Regional cerebral blood flow measured during symptom provocation in obsessive–compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch Gen Psychiatry 51:62–70

    PubMed  CAS  Google Scholar 

  • Rauch SL, Shin LM, Dougherty DD, Alpert NM, Fischman AJ, Jenike MA (2002) Predictors of fluvoxamine response in contamination-related obsessive compulsive disorder: a PET symptom provocation study. Neuropsychopharmacology 27:782–791

    Article  PubMed  CAS  Google Scholar 

  • Reed GF (1977) Obsessional personality disorder and remembering. Br J Psychiatry 130:177–183

    Article  PubMed  CAS  Google Scholar 

  • Reed GF (1985) Obsessional experience and compulsive behaviour: a cognitive–structural approach. Academic, New York

    Google Scholar 

  • Ricciardi JN, Hurley J (1990) Development of animal models of obsessive–compulsive disorders. In: Jenike MA, Baer L, Minichiello WE (eds) Obsessive–compulsive disorders: theory and management. Year Book Medical Publishers, Chicago, pp 189–199

    Google Scholar 

  • Robbins TW (1978) The acquisition of responding with conditioned reinforcement: effects of pipradrol, methylphenidate, d-amphetamine, and nomifensine. Psychopharmacology (Berl) 58:79–87

    Article  CAS  Google Scholar 

  • Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl) 163:362–380

    Article  CAS  Google Scholar 

  • Rolls ET (1996) The orbitofrontal cortex. Philos Trans R Soc Lond B Biol Sci 351:1433–1443; discussion 1443–1444

    PubMed  CAS  Google Scholar 

  • Rolls ET (1999) The brain and emotion. Oxford University Press, New York

    Google Scholar 

  • Rolls ET (2000a) Neurophysiology and functions of the primate amygdala, and the neural basis of emotion. In: Aggleton J (ed) The amygdala: a functinal analysis. Oxford University Press, New York, pp 447–478

    Google Scholar 

  • Rolls ET (2000b) The orbitofrontal cortex and reward. Cereb Cortex 10:284–294

    Article  PubMed  CAS  Google Scholar 

  • Sasson Y, Zohar J, Chopra M, Lustig M, Iancu I, Hendler T (1997) Epidemiology of obsessive–compulsive disorder: a world view. J Clin Psychiatry 58:7–10

    PubMed  Google Scholar 

  • Saxena S, Brody AL, Schwartz JM, Baxter LR (1998) Neuroimaging and frontal–subcortical circuitry in obsessive–compulsive disorder. Br J Psychiatry Suppl 35:26–37

    PubMed  Google Scholar 

  • Saxena S, Brody AL, Maidment KM, Dunkin JJ, Colgan M, Alborzian S, Phelps ME, Baxter LR Jr (1999) Localized orbitofrontal and subcortical metabolic changes and predictors of response to paroxetine treatment in obsessive–compulsive disorder. Neuropsychopharmacology 21:683–693

    Article  PubMed  CAS  Google Scholar 

  • Schoenbaum G, Roesch M (2005) Orbitofrontal cortex, associative learning, and expectancies. Neuron 47:633–636

    Article  PubMed  CAS  Google Scholar 

  • Schoenbaum G, Setlow B (2001) Integrating orbitofrontal cortex into prefrontal theory: common processing themes across species and subdivisions. Learn Mem 8:134–147

    Article  PubMed  CAS  Google Scholar 

  • Schoenbaum G, Chiba AA, Gallagher M (1998) Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat Neurosci 1:155–159

    Article  PubMed  CAS  Google Scholar 

  • Schoenbaum G, Chiba AA, Gallagher M (1999) Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J Neurosci 19:1876–1884

    PubMed  CAS  Google Scholar 

  • Schoenbaum G, Chiba AA, Gallagher M (2000) Changes in functional connectivity in orbitofrontal cortex and basolateral amygdala during learning and reversal training. J Neurosci 20:5179–5189

    PubMed  CAS  Google Scholar 

  • Schoenbaum G, Nugent SL, Saddoris MP, Setlow B (2002) Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport 13:885–890

    Article  PubMed  Google Scholar 

  • Schoenbaum G, Setlow B, Nugent SL, Saddoris MP, Gallagher M (2003a) Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn Mem 10:129–140

    Article  PubMed  Google Scholar 

  • Schoenbaum G, Setlow B, Saddoris MP, Gallagher M (2003b) Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron 39:855–867

    Article  PubMed  CAS  Google Scholar 

  • Setlow B, Gallagher M, Holland PC (2002) The basolateral complex of the amygdala is necessary for acquisition but not expression of CS motivational value in appetitive Pavlovian second-order conditioning. Eur J Neurosci 15:1841–1853

    Article  PubMed  Google Scholar 

  • Soubrie P, Thiebot MH, Simon P, Boissier JR (1978) Benzodiazepines and behavioral effects of reward (water) omission in the rat. Psychopharmacology (Berl) 59:95–100

    Article  CAS  Google Scholar 

  • Stein DJ (2002) Obsessive–compulsive disorder. Lancet 360:397–405

    Article  PubMed  Google Scholar 

  • Stein DJ, Dodman NH, Borchelt P, Hollander E (1994) Behavioral disorders in veterinary practice: relevance to psychiatry. Compr Psychiatry 35:275–285

    Article  PubMed  CAS  Google Scholar 

  • Stein DJ, Spadaccini E, Hollander E (1995) Meta-analysis of pharmacotherapy trials for obsessive–compulsive disorder. Int Clin Psychopharmacol 10:11–18

    PubMed  CAS  Google Scholar 

  • Stein DJ, Van Heerden B, Wessels CJ, Van Kradenburg J, Warwick J, Wasserman HJ (1999) Single photon emission computed tomography of the brain with Tc-99m HMPAO during sumatriptan challenge in obsessive–compulsive disorder: investigating the functional role of the serotonin auto-receptor. Prog Neuropsychopharmacol Biol Psychiatry 23:1079–1099

    Article  PubMed  CAS  Google Scholar 

  • Swedo SE, Schapiro MB, Grady CL, Cheslow DL, Leonard HL, Kumar A, Friedland R, Rapoport SI, Rapoport JL (1989) Cerebral glucose metabolism in childhood-onset obsessive–compulsive disorder. Arch Gen Psychiatry 46:518–523

    PubMed  CAS  Google Scholar 

  • Swedo SE, Pietrini P, Leonard HL, Schapiro MB, Rettew DC, Goldberger EL, Rapoport SI, Rapoport JL, Grady CL (1992) Cerebral glucose metabolism in childhood-onset obsessive–compulsive disorder. Revisualization during pharmacotherapy. Arch Gen Psychiatry 49:690–694

    PubMed  CAS  Google Scholar 

  • Szechtman H, Woody E (2004) Obsessive–compulsive disorder as a disturbance of security motivation. Psychol Rev 111:111–127

    Article  PubMed  Google Scholar 

  • Szechtman H, Sulis W, Eilam D (1998) Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive–compulsive disorder (OCD). Behav Neurosci 112:1475–1485

    Article  PubMed  CAS  Google Scholar 

  • Szechtman H, Eckert MJ, Tse WS, Boersma JT, Bonura CA, McClelland JZ, Culver KE, Eilam D (2001) Compulsive checking behavior of quinpirole-sensitized rats as an animal model of obsessive–compulsive disorder(OCD): form and control. BMC Neurosci 2:4

    Article  PubMed  CAS  Google Scholar 

  • Szeszko PR, Robinson D, Alvir JM, Bilder RM, Lencz T, Ashtari M, Wu H, Bogerts B (1999) Orbital frontal and amygdala volume reductions in obsessive–compulsive disorder. Arch Gen Psychiatry 56:913–919

    Article  PubMed  CAS  Google Scholar 

  • Telegdy G, Fekete M, Balazs M, Kadar T (1983) Effects of a new antidepressant drug on active avoidance behavior in rats. Comparative study with tricyclic antidepressants. Arch Int Pharmacodyn Ther 266:50–59

    PubMed  CAS  Google Scholar 

  • Thiebot MH, Childs M, Soubrie P, Simon P (1983) Diazepam-induced release of behavior in an extinction procedure: its reversal by Ro 15-1788. Eur J Pharmacol 88:111–116

    Article  PubMed  CAS  Google Scholar 

  • Thorpe SJ, Rolls ET, Maddison S (1983) The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp Brain Res 49:93–115

    Article  PubMed  CAS  Google Scholar 

  • Tsaltas E, Kontis D, Chrysikakou S, Giannou H, Biba A, Pallidi S, Christodoulou A, Maillis A, Rabavilas A (2005) Reinforced spatial alternation as an animal model of obsessive–compulsive disorder (OCD): investigation of 5-HT2C and 5-HT1D receptor involvement in OCD pathophysiology. Biol Psychiatry 57:1176–1185

    Article  PubMed  CAS  Google Scholar 

  • Uylings HB, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav Brain Res 146:3–17

    Article  PubMed  Google Scholar 

  • Waxman D (1977) A clinical trial of clomipramine and diazepam in the treatment of phobic and obsessional illness. J Int Med Res 5 Suppl 5:99–110

    PubMed  Google Scholar 

  • Whitelaw RB, Markou A, Robbins TW, Everitt BJ (1996) Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a second-order schedule of reinforcement. Psychopharmacology (Berl) 127:213–224

    CAS  Google Scholar 

  • Williams B (1994) Conditioned reinforcement: neglect or outmoded explanatory construct? Psychon Bull Rev 1:457–475

    Google Scholar 

  • Willner P (1991) Behavioural models in psychopharmacology. In: Willner P (ed) Behavioural models in psychopharmacology: theoretical, industrial and clinical perspectives. Cambridge University Press, Cambridge, pp 3–18

    Google Scholar 

  • Winslow JT, Insel TR (1991) Neuroethological models of obsessive–compulsive disorder. In: Zohar J, Insel T, Rasmussen S (eds) The psychobiology of obsessive–compulsive disorder. Springer, Berlin Heidelberg New York, pp 208–226

    Google Scholar 

  • Winstanley CA, Theobald DE, Cardinal RN, Robbins TW (2004) Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci 24:4718–4722

    Article  PubMed  CAS  Google Scholar 

  • Woods A, Smith C, Szewczak M, Dunn RW, Cornfeldt M, Corbett R (1993) Selective serotonin re-uptake inhibitors decrease schedule-induced polydipsia in rats: a potential model for obsessive compulsive disorder. Psychopharmacology (Berl) 112:195–198

    Article  CAS  Google Scholar 

  • Wookey PE, Strongman KT (1974) Frustration and elation effects in operant analogues of the double runway. Br J Psychol 65:305–313

    PubMed  CAS  Google Scholar 

  • Yadin E, Friedman E, Bridger WH (1991) Spontaneous alternation behavior: an animal model for obsessive–compulsive disorder? Pharmacol Biochem Behav 40:311–315

    Article  PubMed  CAS  Google Scholar 

  • Zohar J, Zohar-Kadouch RC, Kindler S (1992) Current concepts in the pharmacological treatment of obsessive–compulsive disorder. Drugs 43:210–218

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daphna Joel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joel, D. The signal attenuation rat model of obsessive–compulsive disorder: a review. Psychopharmacology 186, 487–503 (2006). https://doi.org/10.1007/s00213-006-0387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0387-2

Keywords

Navigation