Skip to main content
Log in

Effects of N-methyl-d-aspartate receptor antagonism on neuroleptic-induced orofacial dyskinesias

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Tardive dyskinesia is a syndrome of abnormal, involuntary movements, which occurs as a complication of long-term neuroleptic therapy. The pathophysiology of this potentially irreversible syndrome is still an enigma.

Objective

The objective of the present study was to elucidate the role of N-methyl-d-aspartate (NMDA) receptor involvement in neuroleptic-induced orofacial dyskinesia in rats.

Methods

Animals chronically treated with haloperidol for a period of 40 weeks exhibited significantly more vacuous chewing movements (VCMs), as compared to vehicle-treated controls. In a series of acute experiments, rats received: amantadine (10, 20, and 40 mg/kg i.p.), a low-affinity, uncompetitive NMDA-receptor antagonist (open channel blocker); dextrorphan (5, 10, and 20 mg/kg i.p.), an NMDA receptor channel antagonist; ifenprodil (2.5, 5, and 10 mg/kg i.p.), a noncompetitive allosteric NMDA receptor antagonist acting at the polyamine site; and Ro 25-6981 (2.5, 5, and 10 mg/kg i.p.), a potent and selective blocker of NMDA receptors which contain the NR2B subunit.

Results

All the drugs tested, except dextrorphan, reduced VCMs and tongue protrusions with varying efficacies and side effects profiles. Ro 25-6981 was found significantly more potent than amantadine and ifenprodil in reducing VCMs and tongue protrusions at all doses tested, and at the higher dose, it completely eliminated orofacial dyskinesia (p<0.05).

Conclusions

These results suggest that NMDA receptors may play a significant role in the pathophysiology of tardive dyskinesia. Furthermore, antagonists showing selectivity for NMDA receptors containing the NR2B subunit may be particularly efficacious as novel therapeutic agents for the treatment of tardive dyskinesia and deserve further testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NMDA:

N-methyl-D-aspartate

VCMs:

Vacuous Chewing Movements

TD:

Tardive Dyskinesia

AIMs:

Abnormal Involuntary Movements

MSN:

medium spiny neuron

References

  • Andreassen OA, Aamo TO, Joorgensen HA (1996) Inhibition by memantine of the development of persistent oral dyskinesias induced by long-term haloperidol treatment of rats. Br J Pharmacol 119:751–757

    PubMed  Google Scholar 

  • Andreassen OA, Ferrante RJ, Aamo TO, Beal MF, Jorgensen HA (2003) Oral dyskinesias and histopathological alterations in substantia nigra after long-term haloperidol treatment of old rats. Neuroscience 122:717–725

    Article  PubMed  Google Scholar 

  • Angus S, Sugars J, Boltezar R, Koskewich S, Schneider NM (1997) A controlled trial of amantadine hydrochloride and neuroleptics in the treatment of tardive dyskinesia. J Clin Psychopharmacol 17:88–99

    Article  PubMed  Google Scholar 

  • Blanchet PJ, Metman LV, Mouradian MM, Chase TN (1996) Acute pharmacologic blockade of dyskinesias in Parkinson’s disease. Mov Disord 11:580–581

    Article  PubMed  Google Scholar 

  • Blanchet PJ, Konitsiotis S, Whittemore ER, Zhou ZL, Woodward RM, Chase TN (1999) Differing effects of N-methyl-d-aspartate receptor subtype selective antagonists on dyskinesias in levodopa-treated 1-Methyl-4-phenyl-tetrahydropyridine monkeys. J Pharmacol Exp Ther 290:1034–1040

    Google Scholar 

  • Buller AL, Larson HC, Schneider BE, Beaton JA, Morrisett RA, Monaghan DT (1994) The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by subunit composition. J Neurosci 14:5471–5484

    PubMed  Google Scholar 

  • Casey DE (2000) Tardive dyskinesia: pathophysiology and animal models. J Clin Psychiat 61(Suppl 4):5–9

    Google Scholar 

  • Casey DE (2004) Pathophysiology of antipsychotic drug-induced movement disorders. J Clin Psychiatry 65(Suppl 9):25–28

    Google Scholar 

  • Chase TN, Oh JD, Konitsiotis S (2000) Antiparkinsonian and antidyskinetic activity of drugs targeting central glutamatergic mechanisms. J Neurol 247(Suppl 2):II36–II42

    Article  PubMed  Google Scholar 

  • Church J, Lodge D, Berry SC (1985) Differential effects of dextrorphan and levorphanol on the excitation of rat spinal neurons by amino acids. Eur J Pharmacol 111:185–190

    Article  PubMed  Google Scholar 

  • Egan MF, Hurd Y, Ferguson J, Bachus SE, Hamid EH, Hyde TM (1996) Pharmacological and neurochemical differences between acute and tardive vacuous chewing movements induced by haloperidol. Psychopharmacology (Berl) 127:337–345

    Article  Google Scholar 

  • Fiorentini C, Missale C (2004) Oligomeric assembly of dopamine D1 and glutamate NMDA receptors: molecular mechanisms and functional implications. Biochem Soc Trans 32:1025–1028

    Article  PubMed  Google Scholar 

  • Glazer WM (2000) Review of incidence studies of tardive dyskinesia associated with typical antipsychotics. J Clin Psychiatry 61(Suppl 4):15–20

    Google Scholar 

  • Gomez-Mancilla B, Bedard PJ (1993) Effect of nondopaminergic drugs on l-dopa-induced dyskinesias in MPTP-treated monkeys. Clin Neuropharmacol 16:418–427

    PubMed  Google Scholar 

  • Gupta S, Mosnik D, Black DW, Berry S, Masand PS (1999) Tardive dyskinesia: review of treatments past, present, and future. Ann Clin Psychiatry 11:257–266

    Article  PubMed  Google Scholar 

  • Hashimoto K, Mantione CR, Spada MR, Neumeyer JL, London ED (1994) Further characterization of [3H]ifenprodil binding in rat brain. Eur J Pharmacol 266:67–77

    Article  PubMed  Google Scholar 

  • Hashimoto T, Ross DE, Gao XM, Medoff DR, Tamminga CA (1998) Mixture in the distribution of haloperidol-induced oral dyskinesias in the rat supports an animal model of tardive dyskinesia. Psychopharmacology (Berl) 137:107–112

    Article  Google Scholar 

  • Kane J (1995) Tardive dyskinesia: epidemiological and clinical presentation. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 1485–1495

    Google Scholar 

  • Lee CS, Cenci MA, Schulzer M, Bjorklund A (2000) Embryonic ventral mesencephalic grafts improve levodopa - induced dyskinesia in a rat model of Parkinson’s disease. Brain 123:1365–1379

    Article  PubMed  Google Scholar 

  • Loschmann PA, De Groote C, Smith L, Wullner U, Fischer G, Kemp JA, Jenner P, Klockgether T (2004) Antiparkinsonian activity of Ro 25-6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson’s disease. Exp Neurol 187:86–93

    Google Scholar 

  • Mealing GA, Lanthorn TH, Murray CL, Small DL, Morley P (1999) Differences in degree of trapping of low-affinity uncompetitive N-methyl-d-aspartic acid receptor antagonists with similar kinetics of block. J Pharmacol Exp Ther 288:204–210

    PubMed  Google Scholar 

  • Metman LV, Del Dotto P, LePoole K, Konitsiotis S, Fang J, Chase TN (1999) Amantadine for levodopa-induced dyskinesias: a 1-year follow-up study. Arch Neurol 56:1383–1386

    Article  PubMed  Google Scholar 

  • Metman LV, Konitsiotis S, Chase TN (2000) Pathophysiology of motor response complications in Parkinson’s disease: hypotheses on the why, where, and what. Mov Disord 15:3–8

    Article  PubMed  Google Scholar 

  • Monaghan DT, Larsen H (1997) NR1 and NR2 subunit contributions to N-methyl-d-aspartate receptor channel blocker pharmacology. J Pharmacol Exp Ther 280:614–620

    PubMed  Google Scholar 

  • Montastruc JL, Rascol O, Senard JM, Rascol A (1992) A pilot study of N-methyl-d-aspartate (NMDA) antagonist in Parkinson’s disease. J Neurol Neurosurg Psychiatry 55:630–631

    Google Scholar 

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221

    PubMed  Google Scholar 

  • Mutel V, Buchy D, Klingelschmidt A, Messer J, Bleuel Z, Kemp JA, Richards JG (1998) In vitro binding properties in rat brain of [3H] Ro 25-6981, a potent and selective antagonist of NMDA receptors containing NR2B subunits. J Neurochem 70:2147–2155

    PubMed  Google Scholar 

  • Naidu PS, Kulkarni SK (2001) Reversal of neuroleptic-induced orofacial dyskinesia by 5-HT3 receptor antagonists. Eur J Pharmacol 420:113–117

    Article  PubMed  Google Scholar 

  • Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603

    PubMed  Google Scholar 

  • Papa SM, Chase TN (1996) Levodopa-induced dyskinesias improved by a glutamate antagonist in parkinsonian monkeys. Ann Neurol 39:574–578

    Article  PubMed  Google Scholar 

  • Parsons CG, Quack G, Bresink I, Baran L, Przegalinski E, Kostowski W, Krzascik P, Hartmann S, Danysz W (1995) Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 34:1239–1258

    Article  PubMed  Google Scholar 

  • Robertson RG, Farmery MA, Sambrook MA, Crossman AR (1989) Dyskinesia in the primate following injection of an excitatory amino acid antagonist into the medial segment of the globus pallidus. Brain Res 476:317–322

    Article  PubMed  Google Scholar 

  • Rogawski MA (1992) The NMDA receptor, NMDA antagonists and epilepsy therapy. A status report. Drugs 44:279–292

    PubMed  Google Scholar 

  • Rupniak NM, Boyce S, Steventon MJ, Iversen SD, Marsden CD (1992) Dystonia induced by combined treatment with l-dopa and MK-801 in parkinsonian monkeys. Ann Neurol 32:103–105

    Article  PubMed  Google Scholar 

  • Turrone P, Remington G, Nobrega JN (2002) The vacuous chewing movement (VCM) model of tardive dyskinesia revisited: is there a relationship to dopamine D(2) receptor occupancy? Neurosci Biobehav Rev 26:361–380

    Article  PubMed  Google Scholar 

  • Verhagen Metman L, Blanchet PJ, van den Munckhof P, Del Dotto P, Natte R, Chase TN (1998a) A trial of dextromethorphan in parkinsonian patients with motor response complications. Mov Disord 13:414–417

    Article  PubMed  Google Scholar 

  • Verhagen Metman L, Del Dotto P, van den Munckhof P, Fang J, Mouradian MM, Chase TN (1998b) Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology 50:1323–1326

    PubMed  Google Scholar 

  • Verhagen Metman L, Del Dotto P, Natte R, van den Munckhof P, Chase TN (1998c) Dextromethorphan improves levodopa-induced dyskinesias in Parkinson’s disease. Neurology 51:203–206

    PubMed  Google Scholar 

  • Verhagen ML, Morris MJ, Farmer C, Gillespie M, Mosby K, Wuu J, Chase TN (2002) Huntington’s disease: a randomized, controlled trial using the NMDA-antagonist amantadine. Neurology 59:694–699

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spiridon Konitsiotis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konitsiotis, S., Tsironis, C., Kiortsis, D.N. et al. Effects of N-methyl-d-aspartate receptor antagonism on neuroleptic-induced orofacial dyskinesias. Psychopharmacology 185, 369–377 (2006). https://doi.org/10.1007/s00213-006-0348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0348-9

Keywords

Navigation