Skip to main content
Log in

Functional magnetic resonance imaging studies of opioid receptor-mediated modulation of noxious-evoked BOLD contrast in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Functional magnetic resonance imaging (fMRI) in rats can non-invasively identify brain regions activated by physiological stimuli and the effects of pharmacological intervention on these responses.

Objectives

This study was conducted to investigate the effects of systemic administration of the μ-opioid receptor agonist morphine on whole brain functional signal intensity in anaesthetised rats; to investigate whether pre-treatment with the opioid receptor antagonist naloxone blocks the effects of morphine; to determine whether pre-treatment with morphine attenuates noxious-evoked changes in whole brain functional signal intensity.

Methods

Continuous whole brain fMRI scanning was used to study brain signal intensity prior to, and following, systemic administration of morphine (5 mg/kg, n=7), systemic administration of naloxone (1 mg/kg) and morphine (n=8). Effects of pre-treatment with saline (n=5) or morphine (5 mg/kg, n=5) on formalin (5%, intraplantar)-evoked changes in signal intensity were determined. Data were processed using SMP99 with fixed-effects analysis (p<0.05).

Results

Morphine produced significant positive bilateral increases in signal intensity in the cingulate cortex, amygdala, thalamus, hypothalamus and PAG (p<0.05), and these effects were blocked by naloxone. Intraplantar injection of formalin produced a significant positive increase in signal intensity in the cingulate cortex, somatosensory cortex, amygdala, thalamus, hypothalamus and PAG (p<0.05). Morphine attenuated formalin-evoked increases in signal intensity in the PAG, amygdala, hypothalamus and cingulate cortex.

Conclusion

Our data demonstrate that morphine modulates noxious-evoked changes in signal intensity in discrete brain regions. fMRI studies in rats are able to identify specific brain regions involved in the pharmacological modification of physiologically evoked changes in regional brain activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BOLD:

Blood oxygenation level dependent

Cingulate CTX:

Cingulate cortex

DlPAG:

Dorsal lateral periaqueductal grey

DmCPU:

Dorsal medial caudate putamen

fMRI:

Functional magnetic resonance imaging

HindSSCTX:

Hindlimb area of somatosensory cortex

Lhypo:

Lateral hypothalamus

MR:

Magnetic resonance

MAP:

Mean arterial blood pressure

RARE:

Rapid acquisition relaxation enhanced

rCBF:

Regional cerebral bloodflow

RF:

Radiofrequency

SC:

Subcutaneous

SST:

Spinal thalamic tract

VTA:

Ventral tegmental area

References

  • Aloisi AM, Porro CA, Cavazzuti M, Baraldi P, Carli G (1993) Mirror pain in the formalin test: behavioural and 2-deoxyglucose studies. Pain 55:267–273

    Article  PubMed  CAS  Google Scholar 

  • Baulmann J, Spitznagel H, Herdegen T, Unger T, Culman J (2000) Tachykinin receptor inhibition and c-Fos expression in the rat brain following formalin-induced pain. Neuroscience 95:813–820

    Article  PubMed  CAS  Google Scholar 

  • Becerra LR, Breiter HC, Stojanovic M, Fishman S, Edwards A, Comite AR, Gonzalez RG, Borsook D (1999) Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magn Reson Med 41:1044–1057

    Article  PubMed  CAS  Google Scholar 

  • Bernard JF, Bester H, Besson JM (1995) The spino-parabrachio-amygdaloid and hypothalamic nociceptive pathways. In: Besson JM, Guilbaud G, Ollat H (eds) Forebrain areas involved in pain processing. John Libbey Eurotext, France, pp 27–49

    Google Scholar 

  • Borras MC, Becerra L, Ploghaus A, Gostic JM, Dasilva A, Gonzalez RG, Borsook D (2004) FMRI measurement of CNS responses to naloxone infusion and subsequent mild noxious thermal stimuli in healthy volunteers. J Neurophysiol 91:2723–2733

    Article  PubMed  CAS  Google Scholar 

  • Bourgeais L, Monconduit L, Villanueva L, Barnard J-F (2001a) Parabrachial internal lateral neurons convey nociceptive messages from the deep laminas of the dorsal horn to the intralaminar thalamus. J Neurosci 21:2159–2165

    PubMed  CAS  Google Scholar 

  • Bourgeais L, Gauriau C, Barnard JF (2001b) Projections from the noccieptive area of the central nucleus of the amygdala to the forebrain: a PHA-L study in the rat. Eur J Neurosci 14:229–255

    Article  PubMed  CAS  Google Scholar 

  • Casey KL (1999) Forebrain mechanisms of nociception and pain: analysis through imaging. Proc Natl Acad Sci U S A 96:7668–7674

    Article  PubMed  CAS  Google Scholar 

  • Casey KL (2000) Concepts of pain mechanisms: the contribution of functional imaging of the human brain. Prog Brain Res 129:277–287

    PubMed  CAS  Google Scholar 

  • Chang C, Shyu B-C (2001) A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats. Brain Res 897:71–81

    Article  PubMed  CAS  Google Scholar 

  • Cohen SR, Melzack R (1985) Morphine injected into the habenula and dorsal posteromedial thalamus produces analgesia in the formalin test. Brain Res 359:131–139

    Article  PubMed  CAS  Google Scholar 

  • Cohen SR, Kimes AS, London ED (1991) Morphine decrease cerebral glucose utilization in limbic and forebrain regions while pain has no effect. Neuropharmacology 30:125–134

    Article  PubMed  CAS  Google Scholar 

  • Dafny N, Marchand J, McClung R, Salamy J, Sands S, Wachtendorf H, Burks TF (1980) Effects of morphine on sensory-evoked responses recorded from central gray, reticular formation, thalamus, hypothalamus, limbic system, basal ganglia, dorsal raphe, locus ceruleus, pineal body. J Neurosci Res 5:399–412

    Article  PubMed  CAS  Google Scholar 

  • Dubuisson D, Dennis SG (1977) The formalin test: a quantitative study of the analgesic effects of morphine, meperdine, and brain stem stimulation in rats and cats. Pain 4:161–174

    Article  PubMed  CAS  Google Scholar 

  • Fields H (2000) Pain modulation: expectation, opioid analgesia and virtual pain. Prog Brain Res 122:245–253

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Ashburner J, Poline JB, Frith CD, Heather JD, Frackowiak RSJ (1995a) Spatial registration and normalization of images. Hum Brain Mapp 2:165–189

    Article  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995b) Human Brain Mapping 1:214–220 [SPM_3] Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  • Gauriau C, Bernard JF (2004) Pain pathways and parabrachial circuits in the rat. Exp Physiol 87:251–258

    Article  Google Scholar 

  • Gebhart GF (2004) Descending modulation of pain. Neurosci Biobehav Rev 27:729–737

    Article  PubMed  CAS  Google Scholar 

  • Guilbaud G, Peschanski M, Gautron M, Binder D (1980) Neurones responding to noxious stimulation in VB complex and caudal adjacent regions in the thalamus of the rat. Pain 8:303–318

    Article  PubMed  CAS  Google Scholar 

  • Haley JE, Sullivan AF, Dickenson AH (1990) Evidence for the N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat. Brain Res 518:218–226

    Article  PubMed  CAS  Google Scholar 

  • Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833

    Article  PubMed  CAS  Google Scholar 

  • Hill RG, Salt TE, Pepper CM (1982) A comparison of the effectiveness of intravenous morphine at attenuating the nociceptive responses of medullary dorsal horn and thalamic neurones. Life Sci 31:2331–2334

    Article  PubMed  CAS  Google Scholar 

  • Johnson SW, North RA (1992) Opioids excite dopamine neurones by hyperpolarisation of local interneurones. J Neurosci 12:483–488

    PubMed  CAS  Google Scholar 

  • Jones AK, Luthra SK, Maziere B, Pike VW, Loc’h C, Crouzel C, Syrota A, Jones T (1988) Regional cerebral opioid receptor studies with [11C]diprenorphine in normal volunteers. J Neurosci Methods 23:121–129

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Cunningham VJ, Ha-Kawa S, Fujowara T, Luthra SK, Silva S, Derbyshire S, Jones T (1994) Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br J Rheumatol 33:909–916

    Article  PubMed  CAS  Google Scholar 

  • Keilholz SD, Silva AC, Raman M, Merkle H, Koretsky AP (2004) Functional MRI of the rodent somatosensory pathway using multislice echo planar imaging. Magn Reson Med 52:89–99

    Article  PubMed  Google Scholar 

  • LeBrun P, Manil J, Colin F (2000) Formalin-induced central sensitization in the rat: somatosensory evoked potential data. Neurosci Lett 283:113–116

    Article  PubMed  CAS  Google Scholar 

  • Leslie RA, James MF (2000) Pharmacological magnetic resonance imaging: a new application for functional MRI. TIPS 21:314–318

    PubMed  CAS  Google Scholar 

  • Lewis VA, Gebhart GF (1977) Evaluation of the periaqueductal central gray (PAG) as a morphine-specific locus of action and examination of morphine-induced and stimulation-produced analgesia at coincident PAG loci. Brain Res 124:283–303

    Article  PubMed  CAS  Google Scholar 

  • Luo F, Wu G, Li Z, Li S-J (2003) Characterization of effects of mean arterial blood pressure induced by cocaine and cocaine methiodide on BOLD signals in rat brain. Magn Reson Med 49:264–270

    Article  PubMed  Google Scholar 

  • Malisza K, Docherty JC (2001) Capsaicin as a source of painful stimulation in functional MRI. J Magn Reson Imaging 14:341–347

    Article  PubMed  CAS  Google Scholar 

  • Malisza K, Frankenstein U, Stroman P, Docherty J (2001) Negative functional MRI changes in capsaicin-induced painful stimulation in rats. Proc Intl Soc Mag Reson Med 9:657

    Google Scholar 

  • Manning BH, Franklin KB (1998) Morphine analgesia in the formalin test: reversal by microinjection of quaternary naloxone into the posterior hypothalamic area or periaqueductal gray. Behav Brain Res 92:97–102

    Article  PubMed  CAS  Google Scholar 

  • Manning BH, Mayer DJ (1995) The central nucleus of the amygdala contributes to the production of morphine antinociception in the formalin test. Pain 63:141–152

    Article  PubMed  CAS  Google Scholar 

  • Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1987) Autoradiographic differentiation of mu, delta, kappa and opioid receptors in the rat forebrain and midbrain. J Neurosci 7:2445–2464

    PubMed  CAS  Google Scholar 

  • Matos FF, Rollema H, Taiwo YO, Levine JD, Basbaum AI (1995) Relationship between analgesia and extracellular morphine in brain and spinal cord in awake rats. Brain Res 693:187–195

    Article  PubMed  CAS  Google Scholar 

  • Morrow TJ, Paulson PE, Danneman PJ, Casey KL (1998) Regional changes in forebrain activation during the early and late phase of formalin nociception: analysis using cerebral blood flow in the rat. Pain 75:355–365

    Article  PubMed  CAS  Google Scholar 

  • Petrovic P, Kalso E, Petersson KM, Ingvar M (2002) Placebo and opioid analgesia—imaging a shared neuronal network. Science 295:1737–1740

    Article  PubMed  CAS  Google Scholar 

  • Porro CA, Cavazzuti M, Galetti A, Sassatelli L (1991) Functional activity mapping of the rat brainstem during formalin-induced noxious stimulation. Neuroscience 41:667–680

    Article  PubMed  CAS  Google Scholar 

  • Porro CA, Cavazzuti M, Baraldi P, Giuliani D, Panerai AE, Corazza R (1999) CNS pattern of metabolic activity during tonic pain: evidence for modulation by β-endorphin. Eur J Neurosci 11:874–888

    Article  PubMed  CAS  Google Scholar 

  • Presley RW, Menetrey D, Levine JD, Basbaum (1990) Systemic morphine suppresses noxious stimulus-evoked Fos protein-like immunoreactivity in the rat spinal cord. J Neurosci 10:323–335

    PubMed  CAS  Google Scholar 

  • Puig S, Sorkin LS (1996) Formalin-evoked activity in identified primary afferent fibre systemic lidocaine suppresses phase 2 activity. Pain 64:345–355

    Article  PubMed  CAS  Google Scholar 

  • Schlaepfer TE, Strain EC, Greenberg BD, Preston KL, Lancasyer E, Bigelow GE, Barta PE, Pearlson GD (1998) Site of opioid action in the human brain: mu and kappa agonits’ subjective and cerebral blood flow effects. Am J Psychiatry 155:470–473

    PubMed  CAS  Google Scholar 

  • Shah YB, Prior MJW, Dixon AL, Morris PG, Marsden CA (2004) Detection of cannabinoid agonist evoked increase in BOLD contrast in rats using functional magnetic resonance imaging. Neuropharmacology 46:379–387

    Article  PubMed  CAS  Google Scholar 

  • Tracey I, Becerra L, Chang I, Breiter H, Jenkins L, Borsook D, Gonzalez RG (2000) Noxious hot and cold stimulation produce common patterns of brain activation in humans: a functional magnetic resonance imaging study. Neurosci Lett 288:159–162

    Article  PubMed  CAS  Google Scholar 

  • Tuor UI, Malisza K, Foniok T, Papadimiitropoulos R, Jarmasz M, Somorjai R, Kozlowski P (2000) Functional magnetic resonance imaging in rats subjected to intense electrical and noxious chemical stimulation of the forepaw. Pain 87:315–324

    Article  PubMed  CAS  Google Scholar 

  • Tuor UI, McKenzie E, Tomanek B (2002) Functional magnetic resonance imaging of tonic pain and vasopressor effects in rats. Magn Reson Imaging 20:707–712

    Article  PubMed  CAS  Google Scholar 

  • Willis WD (1989) The origin and destination of pathways involved in pain transmission. In: Wall P, Melzack R (eds) The textbook of pain. Churchill Livingstone, London, pp 112–128

    Google Scholar 

  • Wise RG, Rogers R, Painter D, Bantick S, Ploghaus A, Williams P, Rapeport G, Tracey I (2002) Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. NeuroImage 16:999–1014

    Article  PubMed  Google Scholar 

  • Wise RG, Willimas P, Tracey I (2004) Using fMRI to quantify the time dependence of remifentanil analgesia in the human brain. Neurophsychopharmacology 29:626–635

    Article  CAS  Google Scholar 

  • Yaksh TL, Rudy TA (1977) Studies on the direct spinal action of narcotics in the production of analgesia in the rat. J Pharmacol Exp Ther 202:411–428

    PubMed  CAS  Google Scholar 

  • Yang ZJ, Tang JS, Jia H (2002) Morphine microinjections into the rat nucleus submedius depress nociceptive behaviour in the formalin test. Neurosci Lett 328:141–144

    Article  PubMed  CAS  Google Scholar 

  • Yeung JC, Yaksh TL, Rudy TA (1977) Concurrent mapping of brain sites for sensitivity to the direct application of morphine and focal electrical stimulation in the production of antinociception in the rat. Pain 4:23–40

    Article  PubMed  CAS  Google Scholar 

  • Zubieta J-K, Smith Y, Bueller JA, Xu Y, Kilbourn MR, Jewett DM, Meyer CR, Koeppe RA, Stohler CS (2001) Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293:311–315

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. M Randall for his help in performing measurements of blood pressure. This project was supported by Merck and benefited from an MRC JREI grant in conjunction with AstraZeneca

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Chapman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, Y.B., Haynes, L., Prior, M.J.W. et al. Functional magnetic resonance imaging studies of opioid receptor-mediated modulation of noxious-evoked BOLD contrast in rats. Psychopharmacology 180, 761–773 (2005). https://doi.org/10.1007/s00213-005-2214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-2214-6

Keywords

Navigation