Skip to main content
Log in

A dose-finding study of duloxetine based on serotonin transporter occupancy

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Positron emission tomography (PET) has been utilized for determining the dosage of antipsychotic drugs. To evaluate the dosage of antidepressants such as selective serotonin reuptake inhibitors, serotonin transporter occupancy (5-HTT) is also a useful index.

Objectives

We investigated the degree of 5-HTT occupancy with different doses of the antidepressant duloxetine and the time-course of 5-HTT occupancy using PET.

Methods

PET scans with [11C]DASB were performed before and after a single administration of duloxetine (5–60 mg), and three consecutive scans were performed after a single dose or repeated doses of 60 mg of duloxetine.

Results

5-HTT occupancies by duloxetine were increased by 35.3 to 86.5% with dose and plasma concentration increments. The ED50 value of 5-HTT occupancy was 7.9 mg for dose and 3.7 ng/ml for plasma concentration. In the time-course of 5-HTT occupancy, mean occupancies were 81.8% at 6 h, 71.9% at 25 h, and 44.9% at 53 h after a single administration, and 84.3% at 6 h, 71.9% at 49 h, and 47.1% at 78 h after repeated administrations.

Conclusions

Based on 5-HTT occupancy, 40 mg and more of duloxetine was needed to attain 80% occupancy, and 60 mg of duloxetine could maintain a high level of 5-HTT occupancy with a once-a-day administration schedule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andree B, Hedman A, Thorberg SO, Nilsson D, Halldin C, Farde L (2003) Positron emission tomographic analysis of dose-dependent NAD-299 binding to 5-hydroxytryptamine-1A receptors in the human brain. Psychopharmacology (Berl) 167:37–45

    Google Scholar 

  • Brannan SK, Mallinckrodt CH, Detke MJ, Watkin JG, Tollefson GD (2005) Onset of action for duloxetine 60 mg once daily: double-blind, placebo-controlled studies. J Psychiatr Res 39:161–172

    Article  PubMed  Google Scholar 

  • Brannan SK, Mallinckrodt CH, Brown EB, Wohlreich MM, Watkin JG, Schatzberg AF (2005) Duloxetine 60 mg once-daily in the treatment of painful physical symptoms in patients with major depressive disorder. J Psychiatr Res 39:43–53

    Article  PubMed  Google Scholar 

  • Bymaster FP, Dreshfield-Ahmad LJ, Threlkeld PG, Shaw JL, Thompson L, Nelson DL, Hemrick-Luecke SK, Wong DT (2001) Comparative affinity of duloxetine and venlafaxine for serotonin and norepinephrine transporters in vitro and in vivo, human serotonin receptor subtypes, and other neuronal receptors. Neuropsychopharmacology 25:871–880

    Article  PubMed  Google Scholar 

  • Chalon SA, Granier LA, Vandenhende FR, Biek PR, Bymaster FP, Joliat MJ, Hirth C, Potter WZ (2003) Duloxetine increases serotonin and norepinephrine availability in healthy subjects: a double-blind, controlled study. Neuropsychopharmacology 28:1685–1693

    Article  PubMed  Google Scholar 

  • Detke MJ, Lu Y, Goldstein DJ, McNamara RK, Demitrack MA (2002) Duloxetine 60 mg once daily dosing versus placebo in the acute treatment of major depression. J Psychiatr Res 36:383–390

    Article  PubMed  Google Scholar 

  • Detke MJ, Lu Y, Goldstein DJ, Hayes JR, Demitrack MA (2002) Duloxetine, 60 mg once daily, for major depressive disorder: a randomized double-blind placebo-controlled trial. J Clin Psychiatry 63:308–315

    PubMed  Google Scholar 

  • Detke MJ, Wiltse CG, Mallinckrodt CH, McNamara RK, Demitrack MA, Bitter I (2004) Duloxetine in the acute and long-term treatment of major depressive disorder: a placebo- and paroxetine-controlled trial. Eur Neuropsychopharmacol 14:457–470

    Article  PubMed  Google Scholar 

  • Farde L, Wiesel FA, Halldin C, Sedvall G (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45:71–76

    PubMed  Google Scholar 

  • Ginovart N, Wilson AA, Meyer JH, Hussey D, Houle S (2001) Positron emission tomography quantification of [11C]-DASB binding to the human serotonin transporter: modeling strategies. J Cereb Blood Flow Metab 21:1342–1353

    PubMed  Google Scholar 

  • Goldstein DJ, Mallinckrodt C, Lu Y, Demitrack MA (2002) Duloxetine in the treatment of major depressive disorder: a double-blind clinical trial. J Clin Psychiatry 63:225–231

    PubMed  Google Scholar 

  • Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA (2000) Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med 27:1719–1722

    Article  PubMed  Google Scholar 

  • Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H, Suhara T, Suzuki K, Innis RB, Carson RE (2003) Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab 23:1096–1112

    Article  PubMed  Google Scholar 

  • Kish SJ, Furukawa Y, Chang LJ, Tong J, Ginovart N, Wilson A, Houle S, Meyer JH (2005) Regional distribution of serotonin transporter protein in postmortem human brain: is the cerebellum a SERT-free brain region? Nucl Med Biol 32:123–128

    Article  PubMed  Google Scholar 

  • Mamo D, Sedman E, Tillner J, Sellers EM, Romach MK, Kapur S (2004) EMD 281014, a specific and potent 5HT2 antagonist in humans: a dose-finding PET study. Psychopharmacology (Berl) 175:382–388

    Article  Google Scholar 

  • Meyer JH, Wilson AA, Ginovart N, Goulding V, Hussey D, Hood K, Houle S (2001) Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [11C]DASB PET imaging study. Am J Psychiatry 158:1843–1849

    Article  PubMed  Google Scholar 

  • Meyer JH, Wilson AA, Sagrati S, Hussey D, Carella A, Potter WZ, Ginovart N, Spencer EP, Cheok A, Houle S (2004) Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry 161:826–835

    Article  PubMed  Google Scholar 

  • Parsey RV, Kent JM, Oquendo MA, Richards MC, Pratap M, Cooper TB, Arango V, Mann JJ (2006) Acute occupancy of brain serotonin transporter by sertraline as measured by [11C]DASB and positron emission tomography. Biol Psychiatry(in press)

  • Suhara T, Takano A, Sudo Y, Ichimiya T, Inoue M, Yasuno F, Ikoma Y, Okubo Y (2003) High levels of serotonin transporter occupancy with low-dose clomipramine in comparative occupancy study with fluvoxamine using positron emission tomography. Arch Gen Psychiatry 60:386–391

    Article  PubMed  Google Scholar 

  • Takano A, Suhara T (2005) The necessary parameters for estimating the time-course of receptor occupancy. Int J Neuropsychopharmacol 8:143–144

    Article  PubMed  Google Scholar 

  • Takano A, Suhara T, Yasuno F, Suzuki K, Takahashi H, Morimoto T, Lee YJ, Kusuhara H, Sugiyama Y, Okubo Y (2006) The antipsychotic sultopride is overdosed—a PET study of drug-induced receptor occupancy in comparison with sulpiride. Int J Neuropsychopharmacol (in press)

  • Tauscher J, Jones C, Remington G, Zipursky RB, Kapur S (2002) Significant dissociation of brain and plasma kinetics with antipsychotics. Mol Psychiatry 7:317–321

    Article  PubMed  Google Scholar 

  • Turcotte JE, Debonnel G, de Montigny C, Hebert C, Blier P (2001) Assessment of the serotonin and norepinephrine reuptake blocking properties of duloxetine in healthy subjects. Neuropsychopharmacology 24:511–521

    Article  PubMed  Google Scholar 

  • Wilson AA, Garcia A, Jin L, Houle S (2000) Radiotracer synthesis from [11C]-iodomethane: a remarkably simple captive solvent method. Nucl Med Biol 27:529–532

    Article  PubMed  Google Scholar 

  • Wilson AA, Ginovart N, Schmidt M, Meyer JH, Threlkeld PG, Houle S (2000) Novel radiotracers for imaging the serotonin transporter by positron emission tomography: synthesis, radiosynthesis, and in vitro and ex vivo evaluation of 11C-labeled 2-(phenylthio)araalkylamines. J Med Chem 43:3103–3110

    Article  PubMed  Google Scholar 

  • Wong DT (1998) Duloxetine (LY248686): an inhibitor of serotonin and noradrenaline uptake and an antidepressant drug candidate. Expert Opin Investig Drugs 7:1691–1699

    Article  PubMed  Google Scholar 

  • Yasuno F, Hasnine AH, Suhara T, Ichimiya T, Sudo Y, Inoue M, Takano A, Ou T, Ando T, Toyama H (2002) Template-based method for multiple volumes of interest of human brain PET images. Neuroimage 16:577–586

    Article  PubMed  Google Scholar 

  • Yildiz A, Sachs GS (2001) Administration of antidepressants. Single versus split dosing: a meta-analysis. J Affect Disord 66:199–206

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This research was conducted as LY248686 (duloxetine) phase I study in Japan, and was partially supported by Shionogi and Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Suhara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takano, A., Suzuki, K., Kosaka, J. et al. A dose-finding study of duloxetine based on serotonin transporter occupancy. Psychopharmacology 185, 395–399 (2006). https://doi.org/10.1007/s00213-005-0304-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0304-0

Keywords

Navigation