Skip to main content

Advertisement

Log in

Pharmacological characterisation of place escape/avoidance behaviour in the rat chronic constriction injury model of neuropathic pain

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Classical pain tests performed in animals routinely measure evoked nociceptive behaviours. These almost exclusively reflect sensory processing of nociceptive transmission, although a recently described place escape/avoidance paradigm may be used to selectively assess affective pain processing.

Objective

To establish if drugs with proven analgesic efficacy selectively attenuate sensory-discriminative or affective-motivational aspects of nociceptive processing.

Methods

The μ-opioid receptor agonist morphine, the anti-epileptic gabapentin, the anti-depressant duloxetine, the 5HT1A receptor agonist 8-OH-DPAT, the GABAA receptor agonist gaboxadol and the mixed cannabinoid receptor agonist WIN55,212-2 were tested after systemic administration in the chronic constriction injury (CCI) model of neuropathic pain. For the place escape/avoidance paradigm, CCI rats had free access between the ‘non-aversive’ dark and ‘aversive’ light side of an enclosed chamber. Either the injured or non-injured hindpaw was routinely stimulated if the rat was in the dark or light area, respectively. Escape/avoidance behaviour was defined as a shift from the dark to the light area. Mechanical allodynia and hyperalgesia were determined prior to and following escape/avoidance testing.

Results

Morphine (3 and 6 mg/kg), gabapentin (50 and 100 mg/kg), duloxetine (10 and 30 mg/kg) and 8-OH-DPAT (0.1 and 0.5 mg/kg) attenuated the time spent by CCI rats in the light area; gaboxadol (1 and 3 mg/kg) and WIN55,212-2 (0.3 and 1 mg/kg) were ineffective. Only gabapentin and 8-OH-DPAT attenuated mechanical nociceptive behaviours at non-sedative doses.

Conclusions

The place escape/avoidance paradigm may enable discrimination between selected drug classes on distinct components of sensory and affective pain processing in rats with neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Backonja M, Beydoun A, Edwards KR, Schwartz SL, Fonseca V, Hes M, LaMoreaux L, Garofalo E (1998) Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA 280:1831–1836

    Article  PubMed  CAS  Google Scholar 

  • Bardin L, Tarayre JP, Koek W, Colpaert FC (2001) In the formalin model of tonic nociceptive pain, 8-OH-DPAT produces 5-HT1A receptor-mediated, behaviorally specific analgesia. Eur J Pharmacol 421:109–114

    Article  PubMed  CAS  Google Scholar 

  • Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  PubMed  CAS  Google Scholar 

  • Blackburn-Munro G (2004) Pain-like behaviours in animals—how human are they? Trends Pharmacol Sci 25:299–305

    Article  PubMed  CAS  Google Scholar 

  • Blackburn-Munro G, Blackburn-Munro RE (2001) Chronic pain, chronic stress and depression: coincidence or consequence? J Neuroendocrinol 13:1009–1023

    Article  PubMed  CAS  Google Scholar 

  • Blackburn-Munro G, Erichsen HK (2005) Antiepileptics and the treatment of neuropathic pain: evidence from animal models. Curr Pharm Des 11:2961–2976

    Article  PubMed  CAS  Google Scholar 

  • Blackburn-Munro G, Bomholt SF, Erichsen HK (2004) Behavioural effects of the novel AMPA/GluR5 selective receptor antagonist NS1209 after systemic administration in animal models of experimental pain. Neuropharmacology 47:351–362

    Article  PubMed  CAS  Google Scholar 

  • Bomholt SF, Mikkelsen JD, Blackburn-Munro G (2005) Antinociceptive effects of the antidepressants amitriptyline, duloxetine, mirtazapine and citalopram in animal models of acute, persistent and neuropathic pain. Neuropharmacology 48:252–263

    Article  PubMed  CAS  Google Scholar 

  • Bridges D, Ahmad K, Rice AS (2001) The synthetic cannabinoid WIN55,212-2 attenuates hyperalgesia and allodynia in a rat model of neuropathic pain. Br J Pharmacol 133:586–594

    Article  PubMed  CAS  Google Scholar 

  • Carr GD, Fibiger HC, Phillips AG (1989) Conditioned place preference as a measure of drug reward. In: Liebmann JM, Cooper SJ (eds) The neuropharmacological basis of reward. Clarendon, Oxford, pp 264–319

    Google Scholar 

  • Christensen D, Gautron M, Guilbaud G, Kayser V (2001) Effect of gabapentin and lamotrigine on mechanical allodynia-like behaviour in a rat model of trigeminal neuropathic pain. Pain 93:147–153

    Article  PubMed  CAS  Google Scholar 

  • Colpaert FC (1987) Evidence that adjuvant arthritis in the rat is associated with chronic pain. Pain 28:201–222

    Article  PubMed  CAS  Google Scholar 

  • Colpaert FC, Tarayre JP, Koek W, Pauwels PJ, Bardin L, Xu XJ, Wiesenfeld-Hallin Z, Cosi C, Carilla-Durand E, Assie MB, Vacher B (2002) Large-amplitude 5-HT1A receptor activation: a new mechanism of profound, central analgesia. Neuropharmacology 43:945–958

    Article  PubMed  CAS  Google Scholar 

  • Craig AD, Dostrovsky JO (1999) Medulla to thalamus. In: Wall PD, Melzack R (eds) Textbook of pain. Churchill Livingstone, UK, pp 183–214

    Google Scholar 

  • Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    Article  PubMed  CAS  Google Scholar 

  • De Vry J, Schreiber R, Melon C, Dalmus M, Jentzsch KR (2004) 5-HT1A receptors are differentially involved in the anxiolytic- and antidepressant-like effects of 8-OH-DPAT and fluoxetine in the rat. Eur Neuropsychopharmacol 14:487–495

    Article  PubMed  CAS  Google Scholar 

  • Dimond KR, Pande AC, Lamoreaux L, Pierce MW (1996) Effect of gabapentin (Neurontin) on mood and well-being in patients with epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 20:407–417

    Article  PubMed  CAS  Google Scholar 

  • Dyson A, Peacock M, Chen A, Courade JP, Yaqoob M, Groarke A, Brain C, Loong Y, Fox A (2005) Antihyperalgesic properties of the cannabinoid CT-3 in chronic neuropathic and inflammatory pain states in the rat. Pain 116:129–137

    Article  PubMed  CAS  Google Scholar 

  • Erichsen HK, Hao JX, Xu XJ, Blackburn-Munro G (2005) Comparative actions of the opioid analgesics morphine, methadone and codeine in rat models of peripheral and central neuropathic pain. Pain 116:347–358

    Article  PubMed  CAS  Google Scholar 

  • Field MJ, Gonzalez MI, Tallarida RJ, Singh L (2002) Gabapentin and the neurokinin(1) receptor antagonist CI-1021 act synergistically in two rat models of neuropathic pain. J Pharmacol Exp Ther 303:730–735

    Article  PubMed  CAS  Google Scholar 

  • Fox A, Kesingland A, Gentry C, McNair K, Patel S, Urban L, James I (2001) The role of central and peripheral Cannabinoid1 receptors in the antihyperalgesic activity of cannabinoids in a model of neuropathic pain. Pain 92:91–100

    Article  PubMed  CAS  Google Scholar 

  • Frolund B, Ebert B, Kristiansen U, Liljefors T, Krogsgaard-Larsen P (2002) GABA(A) receptor ligands and their therapeutic potentials. Curr Top Med Chem 2:817–832

    Article  PubMed  CAS  Google Scholar 

  • Gimbel JS, Richards P, Portenoy RK (2003) Controlled-release oxycodone for pain in diabetic neuropathy: a randomized controlled trial. Neurology 60:927–934

    PubMed  CAS  Google Scholar 

  • Goldstein DJ, Lu Y, Detke MJ, Lee TC, Iyengar S (2005) Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain 116:109–118

    Article  PubMed  CAS  Google Scholar 

  • Griffin G, Wray EJ, Tao Q, McAllister SD, Rorrer WK, Aung MM, Martin BR, Abood ME (1999) Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528: further evidence for cannabinoid CB2 receptor absence in the rat central nervous system. Eur J Pharmacol 377:117–125

    Article  PubMed  CAS  Google Scholar 

  • Harte SE, Kender RG, Borszcz GS (2005) Activation of 5-HT1A and 5-HT7 receptors in the parafascicular nucleus suppresses the affective reaction of rats to noxious stimulation. Pain 113:405–415

    Article  PubMed  CAS  Google Scholar 

  • Hunt SP, Mantyh PW (2001) The molecular dynamics of pain control. Nat Rev Neurosci 2:83–91

    Article  PubMed  CAS  Google Scholar 

  • Hunter JC, Gogas KR, Hedley LR, Jacobson LO, Kassotakis L, Thompson J, Fontana DJ (1997) The effect of novel anti-epileptic drugs in rat experimental models of acute and chronic pain. Eur J Pharmacol 324:153–160

    Article  PubMed  CAS  Google Scholar 

  • Iyengar S, Webster AA, Hemrick-Luecke SK, Xu JY, Simmons RM (2004) Efficacy of duloxetine, a potent and balanced serotonin-norepinephrine reuptake inhibitor in persistent pain models in rats. J Pharmacol Exp Ther 311:576–584

    Article  PubMed  CAS  Google Scholar 

  • Johansen JP, Fields HL, Manning BH (2001) The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci U S A 98:8077–8082

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    Article  PubMed  CAS  Google Scholar 

  • LaBuda CJ, Fuchs PN (2000a) A behavioral test paradigm to measure the aversive quality of inflammatory and neuropathic pain in rats. Exp Neurol 163:490–494

    Article  PubMed  CAS  Google Scholar 

  • LaBuda CJ, Fuchs PN (2000b) Morphine and gabapentin decrease mechanical hyperalgesia and escape/avoidance behavior in a rat model of neuropathic pain. Neurosci Lett 290:137–140

    Article  PubMed  CAS  Google Scholar 

  • LaBuda CJ, Fuchs PN (2001) Low dose aspirin attenuates escape/avoidance behavior, but does not reduce mechanical hyperalgesia in a rodent model of inflammatory pain. Neurosci Lett 304:137–140

    Article  PubMed  CAS  Google Scholar 

  • LaBuda CJ, Little PJ (2005) Pharmacological evaluation of the selective spinal nerve ligation model of neuropathic pain in the rat. J Neurosci Methods 144:175–181

    PubMed  CAS  Google Scholar 

  • LaGraize SC, Labuda CJ, Rutledge MA, Jackson RL, Fuchs PN (2004) Differential effect of anterior cingulate cortex lesion on mechanical hypersensitivity and escape/avoidance behavior in an animal model of neuropathic pain. Exp Neurol 188:139–148

    Article  PubMed  Google Scholar 

  • LaGraize SC, Borzan J, Peng YB, Fuchs PN (2005) Selective regulation of pain affect following activation of the opioid anterior cingulate cortex system. Exp Neurol (in press)

  • Le Bars D, Gozariu M, Cadden SW (2001) Animal models of nociception. Pharmacol Rev 53:597–652

    PubMed  Google Scholar 

  • Luo ZD, Calcutt NA, Higuera ES, Valder CR, Song YH, Svensson CI, Myers RR (2002) Injury type-specific calcium channel alpha 2 delta-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther 303:1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Malan TP Jr, Ibrahim MM, Vanderah TW, Makriyannis A, Porreca F (2002) Inhibition of pain responses by activation of CB(2) cannabinoid receptors. Chem Phys Lipids 121:191–200

    Article  PubMed  CAS  Google Scholar 

  • Melzack R, Casey KL (1968) Sensory, motivational, and central control determinants of pain. In: Kenshalo DR (ed) The skin sneses. CC Thomas, Springfield, pp 423–439

    Google Scholar 

  • Mitchell VA, Aslan S, Safaei R, Vaughan CW (2005) Effect of the cannabinoid ajulemic acid on rat models of neuropathic and inflammatory pain. Neurosci Lett 382:231–235

    Article  PubMed  CAS  Google Scholar 

  • Mogil JS, Crager SE (2004) What should we be measuring in behavioral studies of chronic pain in animals? Pain 112:12–15

    Article  PubMed  Google Scholar 

  • Morello CM, Leckband SG, Stoner CP, Moorhouse DF, Sahagian GA (1999) Randomized double-blind study comparing the efficacy of gabapentin with amitriptyline on diabetic peripheral neuropathy pain. Arch Intern Med 159:1931–1937

    Article  PubMed  CAS  Google Scholar 

  • Muzina DJ, Elhaj O, Gajwani P, Gao K, Calabrese JR (2005) Lamotrigine and antiepileptic drugs as mood stabilizers in bipolar disorder. Acta Psychiatr Scand Suppl 426:21–28

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Kaneko C, Miyoshi K, Nagumo Y, Kuzumaki N, Nakajima M, Nanjo K, Matsuzawa K, Yamazaki M, Suzuki T (2005) Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala. Neuropsychopharmacology (in press). DOI 10.1038/sj.npp.13300858 locator-type="URL">DOI 10.1038/sj.npp.13300858

  • Ohara PT, Vit JP, Jasmin L (2005) Cortical modulation of pain. Cell Mol Life Sci 62:44–52

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Naeem S, Kesingland A, Froestl W, Capogna M, Urban L, Fox A (2001) The effects of GABA(B) agonists and gabapentin on mechanical hyperalgesia in models of neuropathic and inflammatory pain in the rat. Pain 90:217–226

    Article  PubMed  CAS  Google Scholar 

  • Pedersen LH, Nielsen AN, Blackburn-Munro G (2005) Anti-nociception is selectively enhanced by parallel inhibition of multiple subtypes of monoamine transporters in rat models of persistent and neuropathic pain. Psychopharmacology (Berl) 182:551–561

    Article  CAS  Google Scholar 

  • Pettit DA, Harrison MP, Olson JM, Spencer RF, Cabral GA (1998) Immunohistochemical localization of the neural cannabinoid receptor in rat brain. J Neurosci Res 51:391–402

    Article  PubMed  CAS  Google Scholar 

  • Price DD, Dubner R (1977) Neurons that subserve the sensory-discriminative aspects of pain. Pain 3:307–338

    Article  PubMed  CAS  Google Scholar 

  • Price DD, Barrell JJ, Gracely RH (1980) A psychophysical analysis of experimental factors that selectively influence the affective dimension of pain. Pain 8:137–149

    Article  PubMed  CAS  Google Scholar 

  • Raja SN, Haythornthwaite JA, Pappagallo M, Clark MR, Travison TG, Sabeen S, Royall RM, Max MB (2002) Opioids versus antidepressants in postherpetic neuralgia: a randomized, placebo-controlled trial. Neurology 59:1015–1021

    PubMed  CAS  Google Scholar 

  • Rode F, Jensen DG, Blackburn-Munro G, Bjerrum OJ (2005) Centrally-mediated antinociceptive actions of GABA(A) receptor agonists in the rat spared nerve injury model of neuropathic pain. Eur J Pharmacol 516:131–138

    Article  PubMed  CAS  Google Scholar 

  • Schomburg ED (1990) Spinal sensorimotor systems and their supraspinal control. Neurosci Res 7:265–340

    Article  PubMed  CAS  Google Scholar 

  • Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205–218

    Article  PubMed  CAS  Google Scholar 

  • Watson CP, Moulin D, Watt-Watson J, Gordon A, Eisenhoffer J (2003) Controlled-release oxycodone relieves neuropathic pain: a randomized controlled trial in painful diabetic neuropathy. Pain 105:71–78

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ (1984) Long term alterations in the excitability of the flexion reflex produced by peripheral tissue injury in the chronic decerebrate rat. Pain 18:325–343

    Article  PubMed  CAS  Google Scholar 

  • Young LT, Robb JC, Patelis-Siotis I, MacDonald C, Joffe RT (1997) Acute treatment of bipolar depression with gabapentin. Biol Psychiatry 42:851–853

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

L.H.P. was supported by the Danish Academy of Technical Sciences. Expert technical assistance was provided by Nete Ibsen, Helene Dyhr Pedersen and Margit Jeppesen. We would like to thank Dr Jørgen Scheel-Kruger for many helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise H. Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, L.H., Blackburn-Munro, G. Pharmacological characterisation of place escape/avoidance behaviour in the rat chronic constriction injury model of neuropathic pain. Psychopharmacology 185, 208–217 (2006). https://doi.org/10.1007/s00213-005-0281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0281-3

Keywords

Navigation