Abstract
Rationale
It has been reported that passive administration of nicotine increases preferentially extracellular dopamine (DA) release in the shell as compared to that in the core of the nucleus accumbens (NAc). To date, no information is available if this also applies to active, response-contingent nicotine administration.
Objective
This study was aimed to monitor the changes of extracellular DA in the NAc shell and core during active intravenous nicotine self-administration (SA).
Methods
Rats were bilaterally implanted with chronic cannulae and were trained to self-administer nicotine (0.03 mg/kg, i.v.) in single daily 1-h session for 6 weeks, with an initial fixed ratio (FR) 1 schedule increased to FR 2. Dialysate DA from the NAc shell and core was monitored before and for 90 min after the start of SA.
Results
Significant increases of active nose-pokes over inactive ones were found starting from the 16th SA session. No differences were found in basal extracellular DA in the NAc subdivisions. Data analysis showed (1) significant increases over basal of dialysate DA in the NAc subdivisions during nicotine SA, starting from the first week in the shell and from the second week in the core, (2) preferential increase of extracellular DA during nicotine SA in the shell (24–43%) compared to that in the core (10–23%) and (3) no change in dialysate DA in NAc subdivisions during extinction.
Conclusions
Response-contingent nicotine SA preferentially increases the DA output in the NAc shell as compared to that in the core, independently from the duration of the nicotine exposure. Increase in NAc DA is strictly related to nicotine action since is not observed during extinction in spite of active responding.
This is a preview of subscription content, access via your institution.








References
Acquas E, Carboni E, Leone P, Di Chiara G (1989) SCH 23390 blocks drug-conditioned place–preference and place–aversion: anhedonia (lack of reward) or apathy (lack of motivation) after dopamine-receptor blockade? Psychopharmacology (Berl) 99:151–155
Alheid GF (2003) Extended amygdala and basal forebrain. Ann N Y Acad Sci 985:185–205
Balfour DJ (2002) Neuroplasticity within the mesoaccumbens dopamine system and its role in tobacco dependence. Curr Drug Targets CNS Neurol Disord 1:413–421
Balfour DJ, Benwell ME, Birrell CE, Kelly RJ, Al Aloul M (1998) Sensitization of the mesoaccumbens dopamine response to nicotine. Pharmacol Biochem Behav 59:1021–1030
Bassareo V, Di Chiara G (1997) Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci 17:851–861
Bassareo V, Di Chiara G (1999) Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neuroscience 89:637–641
Benwell ME, Balfour DJ (1992) The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol 105:849–856
Brazell MP, Mitchell SN, Joseph MH, Gray JA (1990) Acute administration of nicotine increases the in vivo extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid and ascorbic acid preferentially in the nucleus accumbens of the rat: comparison with caudate–putamen. Neuropharmacology 29:1177–1185
Cadoni C, Solinas M, Di Chiara G (2000) Psychostimulant sensitization: differential changes in accumbal shell and core dopamine. Eur J Pharmacol 388:69–76
Cadoni C, Solinas M, Valentini V, Di Chiara G (2003) Selective psychostimulant sensitization by food restriction: differential changes in accumbens shell and core dopamine. Eur J Neurosci 18:2326–2334
Caine SB, Koob GF (1993) Modulation of cocaine self-administration in the rat through D-3 dopamine receptors. Science 260:1814–1816
Calabresi P, Lacey MG, North RA (1989) Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording. Br J Pharmacol 98:135–140
Camp DM, Robinson TE (1992) On the use of multiple probe insertions at the same site for repeated intracerebral microdialysis experiments in the nigrostriatal dopamine system of rats. J Neurochem 58:1706–1715
Carboni E, Acquas E, Leone P, Perezzani L, Di Chiara G (1988) 5-HT3 receptor antagonists block morphine- and nicotine-induced place–preference conditioning. Eur J Pharmacol 151:159–160
Carboni E, Bortone L, Giua C, Di Chiara G (2000) Dissociation of physical abstinence signs from changes in extracellular dopamine in the nucleus accumbens and in the prefrontal cortex of nicotine dependent rats. Drug Alcohol Depend 58:93–102
Clarke PB (1990) Mesolimbic dopamine activation—the key to nicotine reinforcement? Ciba Found Symp 152:153–162
Corrigall WA, Coen KM (1989) Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology (Berl) 99:473–478
Corrigall WA, Coen KM (1991) Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology (Berl) 104:171–176
Corrigall WA, Franklin KB, Coen KM, Clarke PB (1992) The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl) 107:285–289
Corrigall WA, Coen KM, Adamson KL (1994) Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 653:278–284
Damsma G, Day J, Fibiger HC (1989) Lack of tolerance to nicotine-induced dopamine release in the nucleus accumbens. Eur J Pharmacol 168:363–368
Dani JA (2003) Roles of dopamine signaling in nicotine addiction. Mol Psychiatry 8:255–256
Datla KP, Ahier RG, Young AM, Gray JA, Joseph MH (2002) Conditioned appetitive stimulus increases extracellular dopamine in the nucleus accumbens of the rat. Eur J Neurosci 16:1987–1993
Deroche V, Marinelli M, Maccari S, Le Moal M, Simon H, Piazza PV (1995) Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. J Neurosci 15:7181–7188
Di Chiara G (1998) A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. J Psychopharmacol 12:54–67
Di Chiara G (2000a) Behavioural pharmacology and neurobiology of nicotine reward and dependence. In: Clementi F, Fornasari D, Gotti C (eds) Handbook of experimental pharmacology. Springer, Berlin Heidelberg New York, pp 603–750
Di Chiara G (2000b) Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol 393:295–314
Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114
Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278
Di Chiara G, Tanda G, Carboni E (1996) Estimation of in-vivo neurotransmitter release by brain microdialysis: the issue of validity. Behav Pharmacol 7:640–657
Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47(Suppl 1):227–241
Donny EC, Caggiula AR, Knopf S, Brown C (1995) Nicotine self-administration in rats. Psychopharmacology (Berl) 122:390–394
Donny EC, Caggiula AR, Mielke MM, Jacobs KS, Rose C, Sved AF (1998) Acquisition of nicotine self-administration in rats: the effects of dose, feeding schedule, and drug contingency. Psychopharmacology (Berl) 136:83–90
Donny EC, Lanza ST, Balster RL, Collins LM, Caggiula A, Rowell PP (2004) Using growth models to relate acquisition of nicotine self-administration to break point and nicotinic receptor binding. Drug Alcohol Depend 75:23–35
Fu Y, Matta SG, Gao W, Brower VG, Sharp BM (2000) Systemic nicotine stimulates dopamine release in nucleus accumbens: re-evaluation of the role of N-methyl-d-aspartate receptors in the ventral tegmental area. J Pharmacol Exp Ther 294:458–465
Fumero B, Guadalupe T, Valladares F, Mora F, O’Neill RD, Mas M, Gonzalez-Mora JL (1994) Fixed versus removable microdialysis probes for in vivo neurochemical analysis: implications for behavioral studies. J Neurochem 63:1407–1415
Georgieva J, Luthman J, Mohringe B, Magnusson O (1993) Tissue and microdialysate changes after repeated and permanent probe implantation in the striatum of freely moving rats. Brain Res Bull 31:463–470
Grenhoff J, Aston-Jones G, Svensson TH (1986) Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiol Scand 128:351–358
Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, Zahm DS (1997) The accumbens: beyond the core–shell dichotomy. J Neuropsychiatry Clin Neurosci 9:354–381
Imperato A, Mulas A, Di Chiara G (1986) Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur J Pharmacol 132:337–338
Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 20:7489–7495
Mereu G, Yoon KW, Boi V, Gessa GL, Naes L, Westfall TC (1987) Preferential stimulation of ventral tegmental area dopaminergic neurons by nicotine. Eur J Pharmacol 141:395–399
Moore H, Stuckman S, Sarter M, Bruno JP (1995) Stimulation of cortical acetylcholine efflux by FG 7142 measured with repeated microdialysis sampling. Synapse 21:324–331
Nisell M, Nomikos GG, Svensson TH (1994) Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 16:36–44
Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic, Sydney
Picciotto MR, Corrigall WA (2002) Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. J Neurosci 22:3338–3341
Picciotto MR, Caldarone BJ, Brunzell DH, Zachariou V, Stevens TR, King SL (2001) Neuronal nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implications. Pharmacol Ther 92:89–108
Pidoplichko VI, Noguchi J, Areola OO, Liang Y, Peterson J, Zhang T, Dani JA (2004) Nicotinic cholinergic synaptic mechanisms in the ventral tegmental area contribute to nicotine addiction. Learn Mem 11:60–69
Pontieri FE, Tanda G, Di Chiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci U S A 92:12304–12308
Pontieri FE, Tanda G, Orzi F, Di Chiara G (1996) Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382:255–257
Pothos EN, Creese I, Hoebel G (1995) Restricted eating with weight loss selectively decreases extracellular dopamine in the nucleus accumbens and alters dopamine response to amphetamine, morphine and food intake. J Neurosci 15:6640–6650
Rahman S, Zhang J, Engleman EA, Corrigall WA (2004) Neuroadaptive changes in the mesoaccumbens dopamine system after chronic nicotine self-administration: a microdialysis study. Neuroscience 129:415–424
Robinson TE, Camp DM (1991) The feasibility of repeated microdialysis for within-subjects design experiments: studies on mesostriatal dopamine system. In: Robins TE, Justice JB (eds) Microdialysis in the neurosciences. Elsevier, Amsterdam, pp 189–234
Shoaib M, Schindler CW, Goldberg SR (1997) Nicotine self-administration in rats: strain and nicotine pre-exposure effects on acquisition. Psychopharmacology (Berl) 129:35–43
Spina L, Fenu S, Longoni R, Rivas E, Di Chiara G (2005) Nicotine-conditioned single-trial place preference: selective role of nucleus accumbens shell dopamine D1 receptors in acquisition. Psychopharmacology (Berl) 10:1–9
Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276:2048–2050
Watkins SS, Koob GF, Markou A (2000) Neural mechanisms underlying nicotine addiction: acute positive reinforcement and withdrawal. Nicotine Tob Res 2:19–37
Acknowledgements
The authors gratefully acknowledge the supply of the self-administration cages by Dr. Steve Goldberg and Dr. Gianluigi Tanda. This study was supported by funds from Ministero dell’Università e della Ricerca, progetti di Ricerca Nazionale Bando 2003, from the Centre of Excellence for Studies on Dependence and from the European Commission, NIDE project.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lecca, D., Cacciapaglia, F., Valentini, V. et al. Preferential increase of extracellular dopamine in the rat nucleus accumbens shell as compared to that in the core during acquisition and maintenance of intravenous nicotine self-administration. Psychopharmacology 184, 435–446 (2006). https://doi.org/10.1007/s00213-005-0280-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00213-005-0280-4
Keywords
- Self-administration
- Microdialysis
- Nicotine
- Dopamine
- Nucleus accumbens shell
- Nucleus accumbens core