Skip to main content
Log in

Early postnatal stimulation alters pregnane neurosteroids in the hippocampus

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The progesterone metabolite 5α-pregnane-3α-ol-20-one (3α,5α-THP) is an important modulator of the hypothalamic–pituitary–adrenal axis and stress-induced corticosterone response. Typically, 3α,5α-THP levels are increased in response to acute stress, which may then reduce corticosterone release from the adrenals. Early postnatal stimulation is a developmental stressor that can produce pervasive endocrine effects.

Objectives

The present studies investigated the effects of early postnatal stimulation on plasma progestin and corticosterone levels and hippocampal progestin levels of rats.

Methods

On postnatal days 9 and 10, rats were either left in their home cage undisturbed or injected intraperitoneally as a means of early stimulation (ES). Tissues were collected on either postnatal day 10 (6 h after last handling experience) or adulthood. Plasma corticosterone, progesterone, and 3α,5α-THP and hippocampal progesterone and 3α,5α-THP were measured by radioimmunoassay.

Results

On postnatal day 10, plasma, but not hippocampal, levels of progesterone and 3α,5α-THP were significantly lower among rats exposed to ES than control rats. These effects occurred concomitant with a tendency for plasma corticosterone to be higher among ES compared to control rats. In adulthood, hippocampal 3α,5α-THP was significantly lower among ES vs control rats.

Conclusions

Together, these data suggest that ES may influence immediate secretion of 3α,5α-THP and corticosterone and have pervasive effects in adulthood on the biosynthesis and/or metabolism of progestins in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ader R (1965) Effects of early experience and differential housing on behavior susceptibility to gastric erosions in the rat. J Comp Physiol Psychol 60:233–238

    Article  PubMed  CAS  Google Scholar 

  • Ader R (1970) The effects of early experience on the adrenocortical response to different magnitudes of stimulation. Physiol Behav 5:837–839

    Article  PubMed  CAS  Google Scholar 

  • Barbaccia ML, Serra M, Purdy RH, Biggio G (2001) Stress and neuroactive steroids. Int Rev Neurobiol 46:243–272

    PubMed  CAS  Google Scholar 

  • Bitran D, Hilvers RJ, Kellogg CK (1991) Anxiolytic effects of 3a-hydroxy-5a[b]-pregnan-20-one: endogenous metabolites of progesterone that are active at the GABAA receptor. Brain Res 561:157–161

    Article  PubMed  CAS  Google Scholar 

  • Bitran D, Dugan M, Renda P, Ellis R, Foley M (1999) Anxiolytic effects of the neuroactive steroid pregnanolone (3α-OH-5β-pregnan-20-one) after microinjection in the dorsal hippocampus and lateral septum. Brain Res 850:217–224

    Article  PubMed  CAS  Google Scholar 

  • Brussaard AB, Kits KS, Baker RE, Willems WP, Leyting-Vermeulen JW, Voorn P, Smit AB, Bicknell RJ, Herbison AE (1997) Plasticity in fast synaptic inhibition of adult oxytocin neurons caused by switch in GABAA receptor subunit expression. Neuron 19:1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Caldji C, Francis D, Sharma S, Plotsky PM, Meaney MJ (2000) The effects of early rearing environment on the development of GABAA and central benzodiazepine receptor levels and novelty-induced fearfulness in the rat. Neuropsychopharmacology 22:219–229

    Article  PubMed  CAS  Google Scholar 

  • Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267:1244–1252

    Article  PubMed  CAS  Google Scholar 

  • Denenberg VH, Zarrow MX, Kalberer WD, Farooq A (1963) Maternal behaviour in the rabbit: effects of environmental variation. Nature 197:161–162

    Article  PubMed  CAS  Google Scholar 

  • Finn DA, Gee KW (1994) The estrus cycle, sensitivity to convulsants and the anticonvulsant effect of a neuroactive steroid. J Pharmacol Exp Ther 271:164–170

    PubMed  CAS  Google Scholar 

  • Finn DA, Roberts AJ, Long S, Tanchuck M, Phillips TJ (2003) Neurosteroid consumption has anxiolytic effects in mice. Pharmacol Biochem Behav 76:451–462

    Article  PubMed  CAS  Google Scholar 

  • Frisone DF, Frye CA, Zimmerberg B (2002) Social isolation stress during the third week of life has age-dependent effects on spatial learning in rats. Behav Brain Res 128:153–160

    Article  PubMed  Google Scholar 

  • Frye CA (2001) The role of neurosteroids and non-genomic effects of progestins and androgens in mediating sexual receptivity of rodents. Brain Res Brain Res Rev 37:201–222

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Bayon LE (1999) Mating stimuli influence endogenous variations in the neurosteroids 3α,5α-THP and 3α-Diol. J Neuroendocrinol 11:839–847

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Vongher JM (1999) 3α,5α-THP in the midbrain ventral tegmental area of rats and hamsters is increased in exogenous hormonal states associated with estrous cyclicity and sexual receptivity. J Endocrinol Invest 22:455–464

    PubMed  CAS  Google Scholar 

  • Frye CA, McCormick CM, Coopersmith C, Erskine MS (1996) Effects of paced and non-paced mating stimulation on plasma progesterone, 3α-diol and corticosterone. Psychoneuroendocrinology 21:431–439

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Bayon LE, Pursnani NK, Purdy RH (1998) The neurosteroids, progesterone and 3α,5β-THP, enhance sexual motivation, receptivity, and proceptivity in female rats. Brain Res 808:72–83

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Petralia SM, Rhodes ME (2000) Estrous cycle and sex differences in performance on anxiety tasks coincide with increases in hippocampal progesterone and 3α,5α-THP. Pharmacol Biochem Behav 67:587–596

    Article  PubMed  CAS  Google Scholar 

  • Heim C, Owens MJ, Plotsky PM, Nemeroff CB (1997) The role of early adverse life events in the etiology of depression and posttraumatic stress disorder. Focus on corticotropin-releasing factor. Ann N Y Acad Sci 821:194–207

    Article  PubMed  CAS  Google Scholar 

  • Higley JD, Suomi SJ, Linnoila M (1991) CSF monoamine metabolite concentrations vary according to age, rearing, and sex, and are influenced by the stressor of social separation in rhesus monkeys. Psychopharmacology (Berl) 103:551–556

    Article  CAS  Google Scholar 

  • Hsu FC, Zhang GJ, Raol Y, Valentino RJ, Coulter DA, Brooks-Kayal AR (2003) Repeated neonatal handling with maternal separation permanently alters hippocampal GABAA receptors and behavioral stress responses. Proc Natl Acad Sci U S A 100:12213–12218

    Article  PubMed  CAS  Google Scholar 

  • Kehoe P, Mallinson K, McCormick CM, Frye CA (2000) Central allopregnanolone is increased in rat pups in response to repeated, short episodes of neonatal isolation. Brain Res Dev Brain Res 124:133–136

    Article  PubMed  CAS  Google Scholar 

  • Kellogg CK, Frye CA (1999) Endogenous levels of 5α-reduced progestins and androgens in fetal vs. adult rat brains. Brain Res Dev Brain Res 115:17–24

    Article  PubMed  CAS  Google Scholar 

  • Kellogg CK, Kenjars TP, Pleger GL, Frye CA (2005) Region-, age-, and sex-specific effects of fetal diazepam exposure on the postnatal development of neurosteroids. Brain Res Dev Brain Res (in press)

  • Levine S, Haltmeyer GC, Karas GG, Denenberg VH (1967) Physiological and behavioral effects of infantile stimulation. Physiol Behav 2:55–63

    Article  CAS  Google Scholar 

  • Macri S, Mason GJ, Wurbel H (2004) Dissociation in the effects of neonatal maternal separations on maternal care and the offspring’s HPA and fear responses in rats. Eur J Neurosci 20:1017–1024

    Article  PubMed  Google Scholar 

  • Madruga C, Xavier LL, Achaval M, Sanvitto GL, Lucion AB (2005) Early handling, but not maternal separation, decreases emotional responses in two paradigms of fear without changes in mesolimbic dopamine. Behav Brain Res (in press)

  • Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007

    Article  PubMed  CAS  Google Scholar 

  • Maldonado AM, Kirstein CL (2005) Cocaine-induced locomotor activity is increased by prior handling in adolescent but not adult female rats. Physiol Behav 86:568–572

    Article  PubMed  CAS  Google Scholar 

  • McCormick CM, Kehoe P, Mallinson K, Cecchi L, Frye CA (2002) Neonatal isolation alters stress hormone and mesolimbic dopamine release in juvenile rats. Pharmacol Biochem Behav 73:77–85

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS, Stellar E (1993) Stress and the individual. Mechanisms leading to disease. Arch Intern Med 153:2093–2101

    Article  PubMed  CAS  Google Scholar 

  • Meaney MJ, Aitken DH (1985) The effects of early postnatal handling on hippocampal glucocorticoid receptor concentrations: temporal parameters. Brain Res 354:301–304

    PubMed  CAS  Google Scholar 

  • Meaney MJ, Viau V, Aitken DH, Bhatnagar S (1988) Stress-induced occupancy and translocation of hippocampal glucocorticoid receptors. Brain Res 445:198–203

    Article  PubMed  CAS  Google Scholar 

  • Meaney MJ, Diorio J, Francis D, Widdowson J, LaPlante P, Caldji C, Sharma S, Seckl JR, Plotsky PM (1996) Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Dev Neurosci 18:49–72

    Article  PubMed  CAS  Google Scholar 

  • Mensah-Nyagan AG, Do-Rego JL, Beaujean D, Luu-The V, Pelletier G, Vaudry H (2001) Regulation of neurosteroid biosynthesis in the frog diencephalon by GABA and endozepines. Horm Behav 40:218–225

    Article  PubMed  CAS  Google Scholar 

  • Nilsson C, Jennische E, Ho HP, Eriksson E, Bjorntorp P, Holmang A (2002) Postnatal endotoxin exposure results in increased insulin sensitivity and altered activity of neuroendocrine axes in adult female rats. Eur J Endocrinol 146:251–260

    Article  PubMed  CAS  Google Scholar 

  • Nunez JF, Ferre P, Escorihuela RM, Tobena A, Fernandez-Teruel A (1996) Effects of postnatal handling of rats on emotional, HPA-axis, and prolactin reactivity to novelty and conflict. Physiol Behav 60:1355–1359

    Article  PubMed  CAS  Google Scholar 

  • Patchev VK, Almeida OF (1996) Gonadal steroids exert facilitating and “buffering” effects on glucocorticoid-mediated transcriptional regulation of corticotropin-releasing hormone and corticosteroid receptor genes in rat brain. J Neurosci 16:7077–7084

    PubMed  CAS  Google Scholar 

  • Patchev VK, Hassan AH, Holsboer DF, Almeida OF (1996) The neurosteroid tetrahydroprogesterone attenuates the endocrine response to stress and exerts glucocorticoid-like effects on vasopressin gene transcription in the rat hypothalamus. Neuropsychopharmacology 15:533–540

    Article  PubMed  CAS  Google Scholar 

  • Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6:2311–2322

    PubMed  CAS  Google Scholar 

  • Purdy RH, Morrow AL, Moore PH Jr, Paul SM (1991) Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A 88:4553–4557

    Article  PubMed  CAS  Google Scholar 

  • Rhodes ME, Frye CA (2001) Inhibiting progesterone metabolism in the hippocampus of rats in behavioral estrus decrease anxiolytic behaviors and enhances exploratory and antinociceptive behaviors. Cogn Affect Behav Neurosci 1:287–296

    Article  PubMed  CAS  Google Scholar 

  • Rodbard D, Hutt DM (1974) Statistical analysis of radioimmunoassay and immunoradiometric assays: a generalized, weighted iterative, least squares method for logistic curve fitting. In: International Atomic Energy Agency (ed) Symposium on radioimmunoassay and related procedures in medicine Uniput, New York, pp 209–223

  • Seckl JR, Meaney MJ (1994) Early life events and later development of ischaemic heart disease. Lancet 342:1236

    Article  Google Scholar 

  • Serra M, Pisu MG, Littera M, Papi G, Sanna E, Tuvera F, Usala L, Purdy RH, Biggio G (2000) Social isolation-induced decreases in both the abundance of neuroactive steroids and GABA(A) receptor function in rat brain. J Neurochem 75:732–740

    Article  PubMed  CAS  Google Scholar 

  • Smythe JW, McCormick CM, Rochford J, Meaney MJ (1994) The interaction between prenatal stress and neonatal handling on nociceptive response latencies in male and female rats. Physiol Behav 55:971–974

    Article  PubMed  CAS  Google Scholar 

  • Zimmerberg B, Kajunski EW (2004) Sexually dimorphic effects of postnatal allopregnanolone on the development of anxiety behavior after early deprivation. Pharmacol Biochem Behav 78:465–471

    Article  PubMed  CAS  Google Scholar 

  • Zimmerberg B, Rackow SH, George-Friedman KP (1999) Sex-dependent behavioral effects of the neurosteroid allopregnanolone (3α,5α-THP) in neonatal and adult rats after postnatal stress. Pharmacol Biochem Behav 64:717–724

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants to CAF from the National Institute of Mental Health (MH06769), and to ARB-K from the National Institute of Neurological Disorders and Stroke (NS38595).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl A. Frye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frye, C.A., Rhodes, M.E., Raol, Y.H. et al. Early postnatal stimulation alters pregnane neurosteroids in the hippocampus. Psychopharmacology 186, 343–350 (2006). https://doi.org/10.1007/s00213-005-0253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0253-7

Keywords

Navigation