Skip to main content

Advertisement

Log in

Why patients with Alzheimer’s disease may show increased sensitivity to tropicamide eye drops: role of locus coeruleus

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Patients suffering from Alzheimer’s disease (AD) may show increased sensitivity to tropicamide, a muscarinic cholinoceptor antagonist. AD is associated with a severe loss of noradrenergic neurones in the locus coeruleus (LC), which can be “switched off” experimentally by the α2-adrenoceptor agonist clonidine. The possibility arises that increased pupillary sensitivity to tropicamide in AD may be due to diminished LC activity.

Objective

To examine the hypothesis that clonidine may potentiate tropicamide-evoked mydriasis.

Materials and methods

Sixteen healthy male volunteers participated in two experimental sessions (0.2 mg clonidine or placebo) conducted 1 week apart. In each session tropicamide (0.01% 10 μl×2) was applied to the left eye and artificial tear (10 μl×2) was applied to the right eye. Pupillary functions (resting pupil diameter and light and darkness reflexes), alertness and non-pupillary autonomic functions (blood pressure, heart rate, core temperature and salivary output) were measured. Data were analysed by ANOVA, with multiple comparisons.

Results

Tropicamide increased resting pupil diameter, velocity and amplitude of the darkness reflex response, and decreased recovery time of the light reflex response. Clonidine affected all these pupillary measures in the opposite direction with the exception of the recovery time. The mydriatic response to tropicamide was potentiated by pre-treatment with clonidine. Clonidine reduced critical flicker fusion frequency, subjective alertness, blood pressure, salivation and temperature.

Conclusions

The potentiation of tropicamide-evoked pupil dilatation by clonidine may be due to the abolition of the increase in parasympathetically mediated pupil constriction due to reduced LC activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abduljawad KA, Langley RW, Bradshaw CM, Szabadi E (1997) Effects of clonidine and diazepam on the acoustic startle response and on its inhibition by ‘prepulses’ in man. J Psychopharmacol 11:29–34

    Article  PubMed  CAS  Google Scholar 

  • Abduljawad KA, Langley RW, Bradshaw CM, Szabadi E (2001) Effects of clonidine and diazepam on prepulse inhibition of the acoustic startle response and the N1/P2 auditory evoked potential in man. J Psychopharmacol 15:237–242

    PubMed  CAS  Google Scholar 

  • Arai H (1996) Biological markers for the clinical diagnosis of Alzheimer’s disease. Tohoku J Exp Med 179:65–79

    Article  PubMed  CAS  Google Scholar 

  • Ariëns EJ, Simonis AM (1964) Functional interaction. In: Ariëns EJ (Ed) Molecular pharmacology, volume I. Academic, New York, pp 329–340

    Google Scholar 

  • Arya DK, Langley RW, Szabadi E (1997) Comparison of the effects of high ambient temperature and clonidine on autonomic functions in man. Naunyn Schmiedebergs Arch Pharmacol 355:376–383

    Article  PubMed  CAS  Google Scholar 

  • Bitsios P, Prettyman R, Szabadi E (1996a) Changes in autonomic function with age: a study of pupillary kinetics in healthy young and old people. Age Ageing 25:432–438

    Article  PubMed  CAS  Google Scholar 

  • Bitsios P, Szabadi E, Bradshaw CM (1996b) Comparison of the effects of psychological threat and clonidine on the kinetics of the pupillary light reflex in man. Br J Clin Pharmacol 42:269–270

    Article  Google Scholar 

  • Bitsios P, Szabadi E, Bradshaw CM (1998) The effects of clonidine on the fear-inhibited light reflex. J Psychopharmacol 12:137–145

    Article  PubMed  CAS  Google Scholar 

  • Bitsios P, Szabadi E, Bradshaw CM (1999) Comparison of the effects of venlafaxine, paroxetine and desipramine on the pupillary light reflex in man. Psychopharmacology (Berl) 143:286–292

    Article  CAS  Google Scholar 

  • Bitsios P, Szabadi E, Bradshaw CM (2004) The fear-inhibited light reflex: importance of the anticipation of an aversive event. Int J Psychophysiol 52:87–95

    Article  PubMed  CAS  Google Scholar 

  • Bond AJ, Lader MH (1974) The use of analogue scales in rating subjective feelings. Br J Med Psychol 47:211–218

    Google Scholar 

  • Bourne PR, Smith SA, Smith SE (1979) Dynamics of the light reflex and the influence of age on the human pupil measured by television pupillometry. J Physiol 293:1

    PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259

    Article  CAS  Google Scholar 

  • Busse A, Bischkopf J, Riedel-Heller SG, Angermeyer MC (2003) Mild cognitive impairment: prevalence and predictive validity according to current approaches. Acta Neurol Scand 108:71–81

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay V, Asan E (1989) Quantitation of catecholamine neurons in the locus coeruleus in human brains of normal young and older adults and in depression. J Comp Neurol 287:357–372

    Article  PubMed  CAS  Google Scholar 

  • Craven RM, Priddle TH, Crow TJ, Esiri MM (2005) The locus coeruleus in schizophrenia: a post-mortem study of noradrenergic neurones. Neuropathol Appl Neurobiol 31:115–126

    Article  PubMed  CAS  Google Scholar 

  • Del Tredici K, Rüb U, de Vos RAI, Bohl JRE, Braak H (2002) Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61:413–426

    PubMed  Google Scholar 

  • Dollery C (1999) Therapeutic drugs, 2nd edition. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Emre M (2003) Dementia associated with Parkinson’s disease. Lancet Neurol 2:229–237

    Article  PubMed  CAS  Google Scholar 

  • Ferrario E, Molaschi M, Villa L, Varetto O, Bogetto C, Nuzzi R (1998) Is video-pupillography useful in the diagnosis of Alzheimer’s disease? Neurology 50:642–644

    PubMed  CAS  Google Scholar 

  • FitzSimon JS, Waring SC, Kokmen E, McLaren JW, Brubaker RF (1997) Response of the pupil to tropicamide is not a reliable test for Alzheimer disease. Arch Neurol 54:155–159

    PubMed  CAS  Google Scholar 

  • Geula C, Mesulam MM (1995) Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis Assoc Disord 2:23–28

    Article  Google Scholar 

  • Gomez-Tortosa E, del Barrio A, Jimenez-Alfaro I (1996) Pupil response to tropicamide in Alzheimer’s disease and other neurodegenerative disorders. Acta Neurol Scand 94:104–109

    Article  PubMed  CAS  Google Scholar 

  • Granholm E, Morris S, Galasko D, Shults C, Rogers E, Vukov B (2003) Tropicamide effects on pupil size and pupillary light reflexes in Alzheimer’s and Parkinson’s disease. Int J Psychophysiol 47:95–115

    Article  PubMed  Google Scholar 

  • Higuchi S, Matsushita S, Hasegawa Y, Muramatsu T, Arai H (1997) Pupillary response to tropicamide in Japanese patients with alcoholic dementia, Alzheimer’s disease, and vascular dementia. Exp Neurol 144:199–201

    Article  PubMed  CAS  Google Scholar 

  • Hou RH, Freeman C, Langley RW, Szabadi E, Bradshaw CM (2005) Does modafinil activate the locus coeruleus in man? Comparison of modafinil and clonidine on arousal and autonomic functions in human volunteers. Psychopharmacology 101:537–549

    Article  CAS  Google Scholar 

  • Kalman J, Kanka A, Magloczky E, Szoke A, Jardanhazy T, Janka Z (1997) Increased mydriatic response to tropicamide is a sign of cholinergic hypersensitivity but not specific to late-onset sporadic type of Alzheimer’s dementia. Biol Psychiatry 41:909–911

    Article  PubMed  CAS  Google Scholar 

  • Kardon RH (1998) Drop the Alzheimer’s drop test. Neurology 50:588–591

    PubMed  CAS  Google Scholar 

  • Kenakin TP (1987) Pharmacologic analysis of drug–receptor interaction. Raven, New York, pp 245–257

    Google Scholar 

  • Kono K, Miyao M, Ishihara S, Takagi A, Ikari H, Suzuki Y, Iguchi A (1996) Hypersensitivity in the pupil dilation response to a cholinergic antagonist in patients with Alzheimer’s disease and Down’s syndrome. Nippon Ronen Igakkai Zasshi 33:829–834

    PubMed  CAS  Google Scholar 

  • Loewenfeld IE (1979) Age changes in pupillary diameter and reactions. In: Thompson SH, Daroff R, Frisen L, Glaser JS, Saunders MD (eds) Topics in neuro-ophthalmology. Williams & Wilkins, Baltimore, pp 124–150

    Google Scholar 

  • Loewenfeld IE (1993) The pupil: anatomy, physiology, and clinical applications (volume I). Wayne State University Press, Detroit, MI, pp 291–294, 407–479, 488–517, 726–727, 1131–1187 and 1200–1203

  • Lohr JB, Jeste DV (1988) Locus coeruleus morphometry in aging and schizophrenia. Acta Psychiatr Scand 77:689–697

    Article  PubMed  CAS  Google Scholar 

  • Longmore J, Theofilopoulos, Szabadi E, Bradshaw CM (1987) Modification of the pupillary light reflex by miotic and mydriatic drugs: applicability of model of functional interaction. Br J Clin Pharmacol 23:610–611

    Google Scholar 

  • Lowenthal DT, Matzek KM, Macgregor TR (1988) Clinical pharmacokinetics of clonidine. Clin Pharmacokinet 14:287–310

    Article  PubMed  CAS  Google Scholar 

  • Lyness SA, Zarow C, Chui HC (2003) Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis. Neurobiol Aging 24:1–23

    Article  PubMed  CAS  Google Scholar 

  • Mackay D (1981) An analysis of functional antagonism and synergism. Br J Pharmacol 73:127–134

    PubMed  CAS  Google Scholar 

  • Manaye KF, McIntire DD, Mann DM, German DC (1995) Locus coeruleus cell loss in the aging human brain: a non-random process. J Comp Neurol 358:79–87

    Article  PubMed  CAS  Google Scholar 

  • Marien MR, Colpaert FC, Rosenquist AC (2004) Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res Brain Res Rev 45:38–78

    Article  PubMed  CAS  Google Scholar 

  • Matthews KL, Chen CP, Esiri MM, Keene J, Minger SL, Francis PT (2002) Noradrenergic changes, aggressive behavior, and cognition in patients with dementia. Biol Psychiatry 51:407–416

    Article  PubMed  CAS  Google Scholar 

  • McKeith I, Mintzer J, Aarsland D, Burn D, Chiu H, Cohen-Mansfield J, Dickson D, Dubois B, Duda JE, Feldman H, Gauthier S, Halliday G, Lawlor B, Lippa C, Lopez OL, Machado JC, O’Brien J, Playfer J, Reid W (2004) Dementia with Lewy bodies. Lancet Neurol 3:19–28

    Article  PubMed  Google Scholar 

  • Morley MJ, Bradshaw CM, Szabadi E (1991) Effects of clonidine and yohimbine on the pupillary light reflex and carbachol-evoked sweating in healthy volunteers. Br J Clin Pharmacol 31:99–101

    PubMed  CAS  Google Scholar 

  • Moroi SE and Lichter PR (2001) Ocular pharmacology. In: Hardman JG, Limberd LE (eds) Goodman and Gillman’s the pharmacological basis of therapeutics, 10th edition. McGraw-Hill, New York, pp 1821–1848

    Google Scholar 

  • Norris H (1971) The action of sedatives on brain stem oculomotor systems in man. Neuropharmacology 10:181–189

    Article  PubMed  CAS  Google Scholar 

  • O’Brien JT, Erkinjuntti T, Reisberg B, Roman G, Sawada T, Pantoni L, Bowler JV, Ballard C, DeCarli C, Gorelick PB, Rockwood K, Burns A, Gauthier S, DeKosky ST (2003) Vascular cognitive dementia. Lancet Neurol 2:89–98

    Article  PubMed  Google Scholar 

  • Parvizi J, Van Hoesen GW, Damasio A (2001) The selective vulnerability of brainstem nuclei to Alzheimer’s disease. Ann Neurol 49:53–66

    Article  PubMed  CAS  Google Scholar 

  • Patil PN (1984) Some factors which affect the ocular drug responses. TIPS 5:201–204

    CAS  Google Scholar 

  • Patil PN (1992) Reactivity of human iris-sphincter to muscarinic drugs in vitro. Naunyn Schmiedebergs Arch Pharmacol 346:614–619

    PubMed  CAS  Google Scholar 

  • Peck RE (1959) The SHP test—an aid in the detection and measurement of depression. Arch Gen Psychiatry 1:35–40

    PubMed  CAS  Google Scholar 

  • Phillips MA, Szabadi E, Bradshaw CM (2000) Comparison of the effects of clonidine and yohimbine on pupillary diameter at different illumination levels. Br J Clin Pharmacol 50:65–68

    Article  PubMed  CAS  Google Scholar 

  • Prettyman R, Bitsios P, Szabadi E (1997) Altered pupillary size and darkness and light reflexes in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 62:665–668

    PubMed  CAS  Google Scholar 

  • Reid JL (1981) The clinical pharmacology of clonidine and related central antihypertensive agents. Br J Clin Pharmacol 12:295–302

    PubMed  CAS  Google Scholar 

  • Robles A, Tourino R, Gude F, Noya M (1999) The tropicamide test in patients with dementia of Alzheimer type and frontotemporal dementia. Funct Neurol 14:203–207

    PubMed  CAS  Google Scholar 

  • Rye D, DeLong MR (2003) Time to focus on the locus. Arch Neurol 60:320

    Article  PubMed  Google Scholar 

  • Rüb U, del Tredici K, Schultz C, Thal DR, Braak E, Braak H (2001a) The autonomic higher order processing nuclei of the lower brain stem are among the early targets of the Alzheimer’s disease-related cytoskeletal pathology. Acta Neuropathol (Berl) 101:555–564

    Google Scholar 

  • Rüb U, del Tredici K, Schultz C, Braak H (2001b) Early involvement of the tegmentopontine reticular nucleus during the evolution of Alzheimer’s disease-related cytoskeletal pathology. Brain Res 908:107–112

    Article  PubMed  Google Scholar 

  • Salazar M, Shimada K, Patil PN (1976) Iris pigmentation and atropine mydriasis. J Pharmacol Exp Ther 197:79–88

    PubMed  CAS  Google Scholar 

  • Scinto LF, Daffner KR, Dressler D, Ransil BI, Rentz D, Weintraub S, Mesulam M, Potter H (1994) A potential noninvasive neurobiological test for Alzheimer’s disease. Science 266:1051–1054

    Article  PubMed  CAS  Google Scholar 

  • Scinto LF, Wu CK, Firla KM, Daffner KR, Saroff D, Geula C (1999a) Focal pathology in the Edinger–Westphal nucleus explains pupillary hypersensitivity in Alzheimer’s disease. Acta Neuropathol (Berl) 97:557–564

    Article  CAS  Google Scholar 

  • Scinto LF, Rentz DM, Potter H, Daffner KR (1999b) Pupil assay and Alzheimer’s disease: a critical analysis. Neurology 52:673–674

    PubMed  CAS  Google Scholar 

  • Scinto LF, Frosch M, Wu CK, Daffner KR, Gedi N, Geula C (2001) Selective cell loss in Edinger–Westphal in asymptomatic elders and Alzheimer’s patients. Neurobiol Aging 22:729–736

    Article  PubMed  CAS  Google Scholar 

  • Smith JM, Misiak H (1976) Critical flicker frequency (CFF) and psychotropic drugs in normal human subjects—a review. Psychopharmacologia 47:175–182

    Article  PubMed  CAS  Google Scholar 

  • Smith SA (1992) Pupil function: tests and disorders. In: Bannister R, Mathias CJ (eds) Autonomic failure, 3rd edition. Oxford University Press, Oxford, pp393–412

    Google Scholar 

  • Szabadi E (1977) The influence of the baseline on the size of pharmacological responses: a theoretical model. Br J Pharmacol 61:492–493

    Google Scholar 

  • Szabadi E, Bradshaw CM (1996) Autonomic pharmacology of α2-adrenoceptors. J Psychopharmacol 10 (Suppl 3): 6–18

    CAS  Google Scholar 

  • Szabadi E, Tavernor S (1999) Hypo- and hypersalivation induced by psychoactive drugs. CNS Drugs 11:449–466

    Article  CAS  Google Scholar 

  • Theofilopoulos N, McDade G, Szabadi E, Bradshaw CM (1995) Effects of reboxetine and desipramine on the kinetics of the pupillary light reflex. Br J Clin Pharmacol 39:251–255

    PubMed  CAS  Google Scholar 

  • Tomlinson BE, Irving D, Blessed G (1981) Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J Neurol Sci 49:419–428

    Article  PubMed  CAS  Google Scholar 

  • Treloar AJ, Assin M, Macdonald AJ (1996) Pupillary response to topical tropicamide as a marker for Alzheimer’s disease. Br J Clin Pharmacol 41:256–257

    PubMed  CAS  Google Scholar 

  • Vijayashankar N, Brody H (1979) A quantitative study of the pigmented neurons in the nuclei locus coeruleus and subcoeruleus in man as related to aging. J Neuropathol Exp Neurol 38:490–497

    PubMed  CAS  Google Scholar 

  • Winer BJ, Brown DR, Michels KM (1991) Statistical principles in experimental design, 3rd edition. McGraw-Hill, Boston

    Google Scholar 

  • Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Szabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, R.H., Samuels, E.R., Raisi, M. et al. Why patients with Alzheimer’s disease may show increased sensitivity to tropicamide eye drops: role of locus coeruleus. Psychopharmacology 184, 95–106 (2006). https://doi.org/10.1007/s00213-005-0227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0227-9

Keywords

Navigation