Skip to main content
Log in

Neuropsychopharmacological properties of neuroactive steroids in depression and anxiety disorders

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Neuroactive steroids modulate neurotransmission through modulation of specific neurotransmitter receptors such as γ-aminobutyric acid type A (GABAA) receptors. Preclinical studies suggested that neuroactive steroids may modulate anxiety- and depression-related behaviour and may contribute to the therapeutical effects of antidepressant drugs. Attenuations of 3α-reduced neuroactive steroids have been observed during major depression. This disequilibrium can be corrected by successful treatment with antidepressant drugs. However, non-pharmacological antidepressant treatment strategies did not affect neuroactive steroid composition independently from the clinical response. Further research is needed to clarify whether enhancement of neuroactive steroid levels might represent a new therapeutical approach in the treatment of affective disorders. Nevertheless, the first studies investigating the therapeutical effects of exogenously administered dehydroepiandosterone revealed promising results in the treatment of major depression. In addition, in various anxiety disorders alterations of neuroactive steroid levels have been observed. In panic disorder, in the absence of panic attacks, neuroactive steroid composition is opposite to that seen in depression, which may represent counter-regulatory mechanisms against the occurrence of spontaneous panic attacks. However, during experimentally induced panic attacks, there was a pronounced decline in GABAergic neuroactive steroids, which might contribute to the pathophysiology of panic attacks. In conclusion, neuroactive steroids contribute to the pathophysiology of affective disorders and the mechanisms of action of antidepressants. They are important endogenous modulators of depression and anxiety and may provide a basis for the development of novel therapeutic agents in the treatment of affective disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

3α-ADIOL:

5α-androstane3α, 17β-diol

5α-THP:

3α, 5α-tetrahydroprogesterone, allopregnanolone

3α, 5β-THP:

3α, 5β-tetrahydroprogesterone

3α, 5α-THDOC:

3α, 5α-tetrahydrodeoxycorticosterone, allotetrahydrodeoxycorticosterone

3α-HSD:

3α-hydroxysteroid dehydrogenase

3β, 5α-THP:

3β, 5α-tetrahydroprogesterone, isopregnanolone

5α-DHP:

5α-dihydroprogesterone, 5α-pregnane-3,20 dione

5α-DHDOC:

5α-dihydrodeoxycorticosterone

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

CCK-4:

cholecystokinin–tetrapeptide

CSF:

cerebrospinal fluid

DHEA:

dehydroepiandosterone

DHEAS:

dehydroepiandosterone sulfate

DOC:

deoxycortisosterone

ECT:

electroconvulsive therapy

GABA:

γ-aminobutyric acid

HPA-axis:

hypothalamic-pituitary-adrenal axis

NMDA:

N-methyl-D-Aspartate

OVX:

ovarectomized

PBT:

pentobarbital

PPD:

post-partum depression

PMDD:

premenstrual dysphoric disorder

PMS:

premenstrual syndrome

PS:

pregnenolone sulfate

PSD:

partial sleep deprivation

PTSD:

post-traumatic stress disorder

rTMS:

repetitive transcranial magnetic stimulation

SSRI:

selective serotonin re-uptake inhibitor

References

  • Akwa Y, Young J, Kabbadj K, Sancho MJ, Zucman D, Vourc`h C, Jung-Testas I, Hu ZY, Le Goascogne C, Jo DH, Corpéchot C, Simon P, Baulieu EE, Robel P (1991) Neurosteroids: biosynthesis, metabolism and function of pregnenolone and dehydroepiandrosterone in the brain. J Steroid Biochem 40:71–81

    Article  CAS  Google Scholar 

  • Akwa Y, Morfin RF, Robel P, Baulieu EE (1992) Neurosteroid metabolism. 7 alpha-hydroxylation of dehydroepiandrosterone and pregnenolone by rat brain microsomes. Biochem J 288:959–964

    PubMed  CAS  Google Scholar 

  • Akwa Y, Purdy RH, Koob GF, Britton KT (1999) The amygdala mediates the anxiolytic-like effect of the neurosteroid allopregnanolone in rat. Behav Brain Res 106:119–125

    Article  PubMed  CAS  Google Scholar 

  • Araneo B, Daynes R (1995) Dehydroepiandrosterone functions as more than an antiglucocorticoid in preserving immunocompetence after thermal injury. Endocrinology 136:393–401

    Article  PubMed  CAS  Google Scholar 

  • Baghai TC, di Michele F, Schüle C, Eser D, Zwanzger P, Pasini A, Romeo E, Rupprecht R (2005) Plasma concentrations of neuroactive steroids before and after electroconvulsive therapy in major depression. Neuropsychopharmacology 30:1181–1186

    PubMed  CAS  Google Scholar 

  • Baker ER, Best RG, Manfredi RL, Demers LM, Wolf GC (1995) Efficacy of progesterone vaginal suppositories in alleviation of nervous symptoms in patients with premenstrual syndrome. J Assist Reprod Genet 12:205–209

    Article  PubMed  CAS  Google Scholar 

  • Barbaccia ML, Roscetti G, Trabucchi M, Mostallino MC, Concas A, Purdy RH, Biggio G (1996) Time-dependent changes in rat brain neuroactive steroid concentrations and GABAA receptor function after acute stress. Neuroendocrinology 63:166–172

    PubMed  CAS  Google Scholar 

  • Barrett-Connor E, von Muhlen D, Laughlin GA, Kripke A (1999) Endogenous levels of dehydroepiandrosterone sulfate, but not other sex hormones, are associated with depressed mood in older women: the Rancho Bernardo Study. J Am Geriatr Soc 47:685–691

    PubMed  CAS  Google Scholar 

  • Baulieu EE (1991) Neurosteroids: a new function in the brain. Biol Cell 71:3–10

    PubMed  CAS  Google Scholar 

  • Bernardi M, Vergoni AV, Sandrini M, Tagliavini S, Bertolini A (1989) Influence of ovariectomy, estradiol and progesterone on the behavior of mice in an experimental model of depression. Physiol Behav 45:1067–1068

    Article  PubMed  CAS  Google Scholar 

  • Bicikova M, Dibbelt L, Hill M, Hampl R, Starka L (1998) Allopregnanolone in women with premenstrual syndrome. Hormon Metab Res 30:227–230

    CAS  Google Scholar 

  • Bicikova M, Tallová J, Hill M, Krausova Z, Hampl R (2000) Serum concentrations of some neuroactive steroids in women suffering from mixed anxiety-depressive disorder. Neurochem Res 25:1623–1627

    Article  PubMed  CAS  Google Scholar 

  • Bitran D, Hilvers RJ, Kellogg CK (1991) Anxiolytic effects of 3α-hydroxy-5α[β]-pregnan-20-one: endogenous metabolites of progesterone that are active at the GABAA receptor. Brain Res 561:157–161

    Article  PubMed  CAS  Google Scholar 

  • Bitran D, Purdy RH, Kellogg CK (1993) Anxiolytic effect of progesterone is associated with increases in cortical allopregnanolone and GABAA receptor function. Pharmacol Biochem Behav 45:423–428

    Article  PubMed  CAS  Google Scholar 

  • Bitran D, Shiekh M, McLeod M (1995) Anxiolytic effect of progesterone is mediated by the neurosteroid allopregnanolone at brain GABAA receptors. J Neuroendocrinol 7:171–177

    PubMed  CAS  Google Scholar 

  • Bloch M, Schmidt PJ, Danaceau MA, Adams LF, Rubinow DR (1999) Dehydroepiandrosterone treatment of midlife dysthymia. Biol Psychiatry 45:1533–1541

    Article  PubMed  CAS  Google Scholar 

  • Bowlby MR (1993) Pregnenolone sulfate potentiation of N-methyl-d-aspartate receptor channels in hippocampal neurons. Mol Pharmacol 43:813–819

    PubMed  CAS  Google Scholar 

  • Brambilla F, Biggio G, Pisu MG, Bellodi L, Perna G, Bogdanovich-Djukic V, Purdy RH, Serra M (2003) Neurosteroid secretion in panic disorder. Psychiatry Res 118:107–116

    Article  PubMed  CAS  Google Scholar 

  • Brambilla F, Biggio G, Pisu MG, Purdy RH, Gerra G, Zaimovich A, Serra M (2004) Plasma concentrations of anxiolytic neurosteroids in men with normal anxiety scores: a correlation analysis. Neuropsychobiology 50:6–9

    Article  PubMed  CAS  Google Scholar 

  • Browne ES, Porter JR, Correa G, Abadie J, Svec F (1993) Dehydroepiandrosterone regulation of the hepatic glucocorticoid receptor in the Zucker rat. The obesity research program. J Steroid Biochem Mol Biol 45:517–524

    Article  PubMed  CAS  Google Scholar 

  • Butterfield MI, Stechuchak KM, Connor KM, Davidson JR, Wang C, MacKuen CL, Pearlstein AM, Marx CE (2005) Neuroactive steroids and suicidality in posttraumatic stress disorder. Am J Psychiatry 162:380–382

    Article  PubMed  Google Scholar 

  • Campbell JS, Karavolas HJ (1990) Characterization of the purified pituitary cytosolic NADPH:5α-dihydroprogesterone 3α-hydroxysteroid oxidoreductase. J Steroid Biochem Mol Biol 37:535–543

    Article  PubMed  CAS  Google Scholar 

  • Celotti F, Melcangi RC, Martini L (1992) The 5α-reductase in the brain: molecular aspects and relation to brain function. Front Neuroendocrinol 13:163–215

    PubMed  CAS  Google Scholar 

  • Compagnone NA, Mellon SH (2000) Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 21:1–56

    Article  PubMed  CAS  Google Scholar 

  • Costa E, Auta J, Guidotti A, Korneyev A, Romeo E (1994) The pharmacology of neurosteroidogenesis. J Steroid Biochem Mol Biol 49:385–389

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN, Glowa JR, Majewska MD, Paul SM (1986) Anxiolytic activity of an endogenous adrenal steroid. Brain Res 398:382–385

    Article  PubMed  CAS  Google Scholar 

  • Dalton K (1989) Successful prophylactic progesterone for idiopathic postnatal depression. Int J Prenatal Perinatal Stud 323–327

  • Dennerstein L, Spencer-Gardner C, Gotts G, Brown JB, Smith MA, Burrows GD (1980) Progesterone and the premenstrual syndrome: a double blind crossover trial. Br Med J 290:1617–1621

    Google Scholar 

  • Dong E, Matsumoto K, Uzunova V, Sugaya I, Takahata H, Nomura H, Watanabe H, Costa E, Guidotti A (2001) Brain 5alpha-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc Natl Acad Sci U S A 98:2849–2854

    Article  PubMed  CAS  Google Scholar 

  • Epperson CN, Wisner KL, Yamamoto B (1999) Gonadal steroids in the treatment of mood disorders. Psychosom Med 61:676–697

    PubMed  CAS  Google Scholar 

  • Eser D, di Michele F, Zwanzger P, Pasini A, Baghai TC, Schüle C, Rupprecht R, Romeo E (2005) Panic induction with cholecystokinin–tetrapeptide (CCK-4) increases plasma concentrations of the neuroactive steroid 3α, 5α tetrahydrodeoxycorticosterone (3α, 5α-THDOC) in healthy volunteers. Neuropsychopharmacology 30:192–195

    Article  PubMed  CAS  Google Scholar 

  • Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    PubMed  CAS  Google Scholar 

  • Fabian TJ, Dew MA, Pollock BG, Reynolds CF, Mulsant BH, Butters MA, Zmuda MD, Linares AM, Trottini M, Kroboth PD (2001) Endogenous concentrations of DHEA and DHEA-S decrease with remission of depression in older adults. Biol Psychiatry 50:767–774

    PubMed  CAS  Google Scholar 

  • Finn DA, Gallaher EJ, Crabbe JC (2000) Differential change in neuroactive steroid sensitivity during ethanol withdrawal. J Pharmacol Exp Ther 292:394–405

    PubMed  CAS  Google Scholar 

  • Flood JF, Morley JE, Roberts E (1992) Memory-enhancing effects in male mice of pregnenolone and of steroids metabolically derived from it. Proc Natl Acad Sci U S A 89:1567–1571

    PubMed  CAS  Google Scholar 

  • Freeman E, Rickels K, Sondheimer SJ, Polansky M (1990) Ineffectiveness of progesterone suppository treatment for premenstrual syndrome. JAMA 264:349–353

    Article  PubMed  CAS  Google Scholar 

  • Freeman EW, Rickels K, Sondheimer SJ, Polansky M (1995) A double-blind trial of oral progesterone, alprazolam, and placebo in treatment of severe premenstrual syndrome. JAMA 274:51–57

    Article  PubMed  CAS  Google Scholar 

  • Friess E, Tagaya H, Trachsel L, Holsboer F, Rupprecht R (1997) Progesterone-induced changes in sleep in male subjects. Am J Physiol 272:E885–E891

    PubMed  CAS  Google Scholar 

  • Frye CA, Walf AA (2002) Changes in progesterone metabolites in the hippocampus can modulate open field and forced swim test behavior of proestrous rats. Horm Behav 41:306–315

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Walf AA, Rhodes ME, Harney JP (2004) Progesterone enhances motor, anxiolytic, analgesic, and antidepressive behavior of wild-type mice, but not those deficient in type 1 5 alpha-reductase. Brain Res 1004:116–124

    Article  PubMed  CAS  Google Scholar 

  • Genazzani AD, Stomati M, Bernardi F, Pieri M, Rovati L, Genazzani AR (2003) Long-term low-dose dehydroepiandrosterone oral supplementation in early and late postmenopausal women modulates endocrine parameters and synthesis of neuroactive steroids. Fertil Steril 80:1495–1501

    Article  PubMed  Google Scholar 

  • George MS, Guidotti A, Rubinow D, Pan B, Mikalauskas K, Post RM (1994) CSF neuroactive steroids in affective disorders: pregnenolone, progesterone and DBI. Biol Psychiatry 35:775–780

    Article  PubMed  CAS  Google Scholar 

  • Goodyer IM, Herbert J, Altham PM (1998) Adrenal steroid secretion and major depression in 8- to 16-year-olds, III. Influence of cortisol/DHEA ratio at presentation on subsequent rates of disappointing life events and persistent major depression. Psychol Med 28:265–273

    Article  PubMed  CAS  Google Scholar 

  • Griffin LD, Mellon SH (1999) Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci U S A 96:13512–13517

    Article  PubMed  CAS  Google Scholar 

  • Guidotti A, Costa E (1998) Can the antidysphoric and anxiolytic profiles of selective serotonin reuptake inhibitors be related to their ability to increase brain 3α, 5α-tetrahydroprogesterone (allopregnanolone) availability? Biol Psychiatry 44:865–873

    Article  PubMed  CAS  Google Scholar 

  • Guidotti A, Dong E, Matsumoto K, Pinna G, Rasmusson AM, Costa E (2001) The socially-isolated mouse: a model to study the putative role of allopregnanolone and 5alpha-dihydroprogesterone in psychiatric disorders. Brain Res Brain Res Rev 37:110–115

    Article  PubMed  CAS  Google Scholar 

  • Heuser I, Deuschle M, Luppa P, Schweiger U, Standhardt H, Weber B (1998) Increased diurnal plasma concentrations of dehydroepiandrosterone in depressed patients. J Clin Endocrinol Metab 83:3130–3133

    Article  PubMed  CAS  Google Scholar 

  • Heydari B, Le Melledo JM (2002) Low pregnenolone sulphate plasma concentrations in patients with generalized social phobia. Psychol Med 32:929–933

    Article  PubMed  Google Scholar 

  • Hsiao CC, Liu CY, Hsiao MC (2004) No correlation of depression and anxiety to plasma estrogen and progesterone levels in patients with premenstrual dysphoric disorder. Psychiatry Clin Neurosci 58:593–599

    Article  PubMed  CAS  Google Scholar 

  • Jorge JC, Gonzalez L, Fortis A, Cruz ND (2005) Sex-specific modulation of anxiety and locomotion after neonatal exposure to pregnenolone sulfate. Physiol Behav 83:779–786

    Article  PubMed  CAS  Google Scholar 

  • Khisti RT, Chopde CT, Jain SP (2000) Antidepressant-like effect of the neurosteroid 3α-hydroxy-5α-pregnan-20-one in mice forced swim test. Pharmacol Biochem Behav 67:137–143

    Article  PubMed  CAS  Google Scholar 

  • Koszycki D, Zacharko RM, Le Mellédo JM, Bradwejn J (1998) Behavioral, cardiovascular, and neuroendocrine profiles following CCK-4 challenge in healthy volunteers: a comparison of panickers and nonpanickers. Depress Anxiety 8:1–7

    Article  PubMed  CAS  Google Scholar 

  • Krause JE, Karavolas HJ (1980) Pituitary 5α-dihydroprogesterone 3α-hydroxysteroid oxidoreductases. J Biol Chem 255:11807–11814

    PubMed  CAS  Google Scholar 

  • Lambert JJ, Belelli D, Hill-Venning C, Peters JA (1995) Neurosteroids and GABAA receptor function. Trends Pharmacol Sci 16:295–303

    Article  PubMed  CAS  Google Scholar 

  • Lancel M, Faulhaber J, Holsboer F, Rupprecht R (1996) Progesterone induces changes in sleep EEG comparable to those of agonistic GABAA receptor modulators. Am J Physiol 271:E763–E772

    PubMed  CAS  Google Scholar 

  • Lawrie TA, Hofmeyr GJ, De Jager M, Berk M, Paiker J, Viljoen E (1998) A double-blind randomised placebo controlled trial of postnatal norethisterone enanthate: the effect on postnatal depression and serum hormones. Br J Obstet Gynaecol 105:1082–1090

    PubMed  CAS  Google Scholar 

  • Lawrie TA, Herxheimer A, Dalton K (2000) Oestrogens and progestogens for preventing and treating postnatal depression. Cochrane Database Syst Rev CD001690

  • Le Melledo J-M, Merani S, Koszycki D, Bellavance F, Palmour R, Gutkowska J, Steinberg S, Bichet DG, Bradwejn J (1999) Sensitivity to CCK-4 in women with and without premenstrual dysphoric disorder (PMDD) during their follicular and luteal phases. Neuropsychopharmacology 20:81–91

    Article  PubMed  Google Scholar 

  • Maayan R, Yagorowski Y, Grupper D, Weiss M, Shtaif B, Kaoud MA, Weizman A (2000) Basal plasma dehydroepiandrosterone sulfate level: a possible predictor for response to electroconvulsive therapy in depressed psychotic inpatients. Biol Psychiatry 48:693–701

    Article  PubMed  CAS  Google Scholar 

  • Magill PJ (1995) Investigation of the efficacy of progesterone pessaries in the relief of symptoms of premenstrual syndrome. Progesterone Study Group. Br J Gen Pract 45:589–593

    PubMed  CAS  Google Scholar 

  • Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007

    PubMed  CAS  Google Scholar 

  • Majewska MD, Mienville J-M, Vicini S (1988) Neurosteroid pregnenolone sulfate antagonizes electrophysiological responses to GABA in neurons. Neurosci Lett 90:279–284

    Article  PubMed  CAS  Google Scholar 

  • Majewska MD, Bluet-Pajot M-T, Robel P, Baulieu EE (1989) Pregnenolone sulfate antagonizes barbiturate-induced hypnosis. Pharmacol Biochem Behav 33:701–703

    Article  PubMed  CAS  Google Scholar 

  • Majewska MD, Demigören S, Spivak CE, London ED (1990) The neurosteroid dehydroepiandrosterone sulfate is an allosteric antagonist of the GABAA receptor. Brain Res 526:143–146

    Article  PubMed  CAS  Google Scholar 

  • Majewska MD (1992) Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol 38:379–395

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Mota L, Contreras CM, Saavedra M (1999) Progesterone reduces immobility in rats forced to swim. Arch Med Res 30:286–289

    Article  PubMed  CAS  Google Scholar 

  • Mathis C, Vogel E, Cagniard B, Criscuolo F, Ungerer A (1996) The neurosteroid pregnenolone sulfate blocks deficits induced by a competitive NMDA antagonist in active avoidance and lever-press learning tasks in mice. Neuropharmacology 35:1057–1064

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Uzunova V, Pinna G, Taki K, Uzunov DP, Watanabe H, Mienville J-M, Guidotti A, Costa E (1999) Permissive role of brain allopregnanolone content in the regulation of pentobarbital-induced righting reflex loss. Neuropharmacology 38:955–963

    Article  PubMed  CAS  Google Scholar 

  • Meieran SE, Reus VI, Webster R, Shafton R, Wolkowitz OM (2003) Chronic pregnenolone effects in normal humans: attenuation of benzodiazepine-induced sedation. Psychoneuroendocrinology 29:486–500

    Article  CAS  Google Scholar 

  • Melchior CL, Ritzmann RF (1994a) Dehydroepiandrosterone is an anxiolytic in mice on the plus maze. Pharmacol Biochem Behav 47:437–441

    Article  PubMed  CAS  Google Scholar 

  • Melchior CL, Ritzmann RF (1994b) Pregnenolone and pregnenolone sulfate, alone and with ethanol, in mice on plus-maze. Pharmacol Biochem Behav 48:893–897

    Article  PubMed  CAS  Google Scholar 

  • Michael A, Jenaway A, Paykel ES, Herbert J (2000) Altered salivary dehydroepiandrosterone levels in major depression in adults. Biol Psychiatry 48:989–995

    Article  PubMed  CAS  Google Scholar 

  • Mienville J-M, Vicini S (1989) Pregnenolone sulfate antagonizes GABAA receptor-mediated currents via a reduction of channel opening frequency. Brain Res 489:190–194

    Article  PubMed  CAS  Google Scholar 

  • Monnet FP, Mahé V, Robel P, Baulieu EE (1995) Neurosteroids, via sigma receptors, modulate the [3H]norepinephrine release evoked by N-methyl-d-aspartate in the rat hippocampus. Proc Natl Acad Sci U S A 92:3774–3778

    PubMed  CAS  Google Scholar 

  • Monteleone P, Luisi S, Tonetti A, Bernardi F, Genazzani AD, Luisi M, Petraglia F, Genazzani AR (2000) Allopregnanlone concentrations and premenstrual syndrome. Eur J Endocrinol 142:269–273

    Article  PubMed  CAS  Google Scholar 

  • Morrow AL, Devaud LL, Purdy RH, Paul SM (1995) Neuractive steroid modulators of the stress response. In: Chrousos GP, McCarty R, Pacák K, Cizza G, Sternberg E, Gold PW, Kvetnansky R (eds) Stress: basic mechanisms and clinical implications. The New York Academy of Sciences, New York, pp 257–272

    Google Scholar 

  • Murphy BE, Abbott FV, Allison CM, Watts C, Ghadirian AM (2004) Elevated levels of some neuroactive progesterone metabolites, particularly isopregnanolone, in women with chronic fatigue syndrome. Psychoneuroendocrinology 29:245–268

    Article  PubMed  CAS  Google Scholar 

  • Nadjafi-Triebsch C, Huell M, Burki D, Rohr UD (2003) Progesterone increase under DHEA-substitution in males. Maturitas 45:231–235

    Article  PubMed  CAS  Google Scholar 

  • Osran H, Reist C, Chen CC, Lifrak ET, Chicz-DeMet A, Parker LN (1993) Adrenal androgens and cortisol in major depression. Am J Psychiatry 150:806–809

    PubMed  CAS  Google Scholar 

  • Owens MJ, Ritchie JC, Nemeroff CB (1992) 5 alpha-pregnane-3 alpha, 21-diol-20-one (THDOC) attenuates mild stress-induced increases in plasma corticosterone via a non-glucocorticoid mechanism: comparison with alprazolam. Brain Res 573:353–355

    Article  PubMed  CAS  Google Scholar 

  • Padberg F, di Michele F, Zwanzger P, Romeo E, Bernardi G, Schüle C, Baghai TC, Ella R, Pasini A, Rupprecht R (2002) Plasma concentrations of neuroactive steroids before and after repetitive transcranial magnetic stimulation (rTMS) in major depression. Neuropsychopharmacology 27:874–878

    Article  PubMed  CAS  Google Scholar 

  • Park-Chung M, Wu FS, Farb DH (1994) 3α-hydroxy-5 β-pregnan-20-one sulfate: a negative modulator of the NMDA-induced current in cultured neurons. Mol Pharmacol 46:146–150

    PubMed  CAS  Google Scholar 

  • Patchev VK, Shoaib M, Holsboer F, Almeida OFX (1994) The neurosteroid tetrahydroprogesterone counteracts corticotropin-releasing hormone-induced anxiety and alters the release and gene expression of corticotropin-releasing hormone in the rat hypothalamus. Neuroscience 62:265–271

    Article  PubMed  CAS  Google Scholar 

  • Patchev VK, Hassan AHS, Holsboer F, Almeida OFX (1996) The neurosteroid tetrahydroprogesterone attenuates the endocrine response to stress and exerts glucocorticoid-like effects on vasopressin gene transcription in the rat hypothalamus. Neuropsychopharmacology 15:533–541

    Article  PubMed  CAS  Google Scholar 

  • Patchev VK, Montkowski A, Rouskova D, Koranyi L, Holsboer F, Almeida OFX (1997) Neonatal treatment of rats with the neuroactive steroid tetrahydrodeoxycorticosterone (THDOC) abolishes the behavioral and neurondocrine consequences of adverse early life events. J Clin Invest 99:962–966

    PubMed  CAS  Google Scholar 

  • Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6:2311–2322

    PubMed  CAS  Google Scholar 

  • Picazo O, Fernández-Guasti A (1995) Anti-anxiety effects of progesterone and some of its reduced metabolites: an evaluation using the burying behavior test. Brain Res 680:135–141

    Article  PubMed  CAS  Google Scholar 

  • Pico-Alfonso MA, Garcia-Linares MI, Celda-Navarro N, Herbert J, Martinez M (2004) Changes in cortisol and dehydroepiandrosterone in women victims of physical and psychological intimate partner violence. Biol Psychiatry 56:233–240

    Article  PubMed  CAS  Google Scholar 

  • Purdy RH, Morrow AL, Blinn JR, Paul SM (1990) Synthesis, metabolism, and pharmacological activity of 3α- hydroxy steroids which potentiate GABA-receptor-mediated chloride ion uptake in rat cerebral cortical synaptosomes. J Med Chem 33:1572–1581

    Article  PubMed  CAS  Google Scholar 

  • Purdy RH, Morrow AL, Moore PH, Paul SM (1991) Stress-induced elevations of γ-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci USA 8:4553–4557

    Google Scholar 

  • Rasmusson AM, Vasek J, Lipschitz DS, Vojvoda D, Mustone ME, Shi Q, Gudmundsen G, Morgan CA, Wolfe J, Charney DS (2004) An increased capacity for adrenal DHEA release is associated with decreased avoidance and negative mood symptoms in women with PTSD. Neuropsychopharmacology 29:1546–1557

    Article  PubMed  CAS  Google Scholar 

  • Reddy DS, Kulkarni SK (1997) Differential anxiolytic effects of neurosteroids in the mirrored chamber behavior test in mice. Brain Res 752:61–71

    Article  PubMed  CAS  Google Scholar 

  • Reddy DS, Kaur G, Kulkarni SK (1998) Sigma (σ1) receptor mediated antidepressant-like effects of neurosteroids in the Porsolt forced swim test. Neuroreport 9:3069–3073

    PubMed  CAS  Google Scholar 

  • Reddy DS (2003) Is there a physiological role for the neurosteroid THDOC in stress-sensitive conditions? Trends Pharmacol Sci 24:103–106

    Article  PubMed  CAS  Google Scholar 

  • Reddy DS (2004) Role of neurosteroids in catamenial epilepsy. Epilepsy Res 62:99–118

    Article  PubMed  CAS  Google Scholar 

  • Reddy DS, O'Malley BW, Rogawski MA (2005) Anxiolytic activity of progesterone in progesterone receptor knockout mice. Neuropharmacology 48:14–24

    Article  PubMed  CAS  Google Scholar 

  • Rhodes ME, Harney JP, Frye CA (2004) Gonadal, adrenal, and neuroactive steroids' role in ictal activity. Brain Res 1000:8–18

    Article  PubMed  CAS  Google Scholar 

  • Roberts E (1995) Pregneolone—from Selye to Alzheimer and a model of the pregnenolone sulfate binding site on the GABAA receptor. Biochem Pharmacol 49:1–16

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ, Johnson NJ (1998) Behaviorally selective effects of neuroactive steroids on plus-maze anxiety in mice. Pharmacol Biochem Behav 59:221–232

    Article  PubMed  CAS  Google Scholar 

  • Romeo E, Ströhle A, Spalletta G, di Michele F, Hermann B, Holsboer F, Pasini A, Rupprecht R (1998) Effects of antidepressant treatment on neuroactive steroids in major depression. Am J Psychiatry 155:910–913

    PubMed  CAS  Google Scholar 

  • Rupprecht R (1997) The neuropsychopharmacological potential of neuroactive steroids. J Psychiatr Res 31: 297–314

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R, Holsboer F (1999) Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci 22:410–416

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R (2003) Neuroactive steroids: mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology 28:139–168

    Article  PubMed  CAS  Google Scholar 

  • Schmidt PJ, Purdy RH, Moore PH, Paul SM, Rubinow DR (1994) Circulating levels of anxiolytic steroids in the luteal phase in women with premenstrual syndrome and in control subjects. J Clin Endocrinol Metab 79:1256–1260

    Article  PubMed  CAS  Google Scholar 

  • Schmidt PJ, Daly RC, Bloch M, Smith MJ, Danaceau MA, St Clair LS, Murphy JH, Haq N, Rubinow DR (2005) Dehydroepiandrosterone monotherapy in midlife-onset major and minor depression. Arch Gen Psychiatry 62:154–162

    Article  PubMed  CAS  Google Scholar 

  • Schüle C, di Michele F, Baghai T, Romeo E, Bernardi G, Zwanzger P, Padberg F, Pasini A, Rupprecht R (2003) Influence of sleep deprivation on neuroactive steroids in major depression. Neuropsychopharmacology 28:577–581

    Article  PubMed  CAS  Google Scholar 

  • Semeniuk T, Jhangri GS, Le Melledo JM (2001) Neuroactive steroid levels in patients with generalized anxiety disorder. J Neuropsychiatry Clin Neurosci 13:396–398

    PubMed  CAS  Google Scholar 

  • Serra M, Pisu MG, Muggironi M, Parodo V, Papi G, Sari R, Dazzi L, Spiga F, Purdy RH, Biggio G (2001) Opposite effects of short- versus long-term administration of fluoxetine on the concentrations of neuroactive steroids in rat plasma and brain. Psychopharmacology (Berl) 158:48–54

    Article  CAS  Google Scholar 

  • Serra M, Pisul MG, Dazzi L, Purdy RH, Biggio G (2002) Prevention of the stress-induced increase in the concentration of neuroactive steroids in rat brain by long-term administration of mirtazapine but not of fluoxetine. J Psychopharmacol 16:133–138

    Article  PubMed  CAS  Google Scholar 

  • Silvers JM, Tokunaga S, Berry RB, White AM, Matthews DB (2003) Impairments in spatial learning and memory: ethanol, allopregnanolone, and the hippocampus. Brain Res Brain Res Rev 43:275–284

    Article  PubMed  CAS  Google Scholar 

  • Sondergaard HP, Hansson LO, Theorell T (2002) Elevated blood levels of dehydroepiandrosterone sulphate vary with symptom load in posttraumatic stress disorder: findings from a longitudinal study of refugees in Sweden. Psychother Psychosom 71:298–303

    Article  PubMed  Google Scholar 

  • Spivak B, Maayan R, Kotler M, Mester R, Gil-Ad I, Shtaif B, Weizman A (2000) Elevated circulatory level of GABAA-antagonistic neurosteroids in patients with combat-related post-traumatic stress disorder. Psychol Med 30:1227–1231

    Article  PubMed  CAS  Google Scholar 

  • Steiger A (2003) Sleep and endocrine regulation. Front Biosci 8:358–376

    Google Scholar 

  • Ströhle A, Romeo E, Hermann B, Pasini A, Spalletta G, di Michele F, Holsboer F, Rupprecht R (1999) Concentrations of 3α-reduced neuroactive steroids and their precursors in plasma of patients with major depression and after clinical recovery. Biol Psychiatry 45:247–277

    Article  PubMed  Google Scholar 

  • Ströhle A, Pasini A, Romeo E, Hermann B, Spalletta G, di Michele F, Holsboer F, Rupprecht R (2000) Fluoxetine decreases concentrations of 3α, 5α-tetrahydrodeoxycorticosterone (THDOC) in major depression. J Psychiatr Res 34:183–186

    Article  PubMed  Google Scholar 

  • Ströhle A, Romeo E, di Michele F, Pasini A, Yassouridis A, Holsboer F, Rupprecht R (2002) GABAA receptor modulatory neuroactive steroid composition in panic disorder and during paroxetine treatment. Am J Psychiatry 159:145–147

    Article  PubMed  Google Scholar 

  • Ströhle A, Romeo E, di Michele F, Pasini A, Hermann B, Gajewsky G, Holsboer F, Rupprecht R (2003) Induced panic attacks shift gamma-aminobutyric acid type A receptor modulatory neuroactive steroid composition in patients with panic disorder: preliminary results. Arch Gen Psychiatry 60:161–168

    Article  PubMed  Google Scholar 

  • Strous RD, Maayan R, Lapidus R, Stryjer R, Lustig M, Kotler M, Weizman A (2003) Dehydroepiandrosterone augmentation in the management of negative, depressive, and anxiety symptoms in schizophrenia. Arch Gen Psychiatry 60:133–141

    Article  PubMed  CAS  Google Scholar 

  • Sundstrom Poromaa I, Smith S, Gulinello M (2003) GABA receptors, progesterone and premenstrual dysphoric disorder. Arch Women Ment Health 6:23–41

    Article  CAS  Google Scholar 

  • Tait GR, McManus K, Bellavance F, Nathalie L, Chrapko W, Le Melledo JM (2002) Neuroactive steroid changes in response to challenge with the panicogenic agent pentagastrin. Psychoneuroendocrinology 27:417–429

    Article  PubMed  CAS  Google Scholar 

  • Thomas G, Frenoy N, Legrain S, Sebag-Lanoe R, Baulieu EE, Debuire B (1994) Serum dehydroepiandrosterone sulfate levels as an individual marker. J Clin Endocrinol Metab 79:1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Tollefson GD, Haus E, Garvey MJ, Evans M, Tuason VB (1990) 24 hour urinary dehydroepiandrosterone sulfate in unipolar depression treated with cognitive and/or pharmacotherapy. Ann Clin Psychiatry 2:39–45

    Google Scholar 

  • Trauger JW, Jiang A, Stearns BA, LoGrasso PV (2002) Kinetics of allopregnanolone formation catalyzed by human 3 α-hydroxysteroid dehydrogenase type III (AKR1C2). Biochemistry 41:13451–13459

    Article  PubMed  CAS  Google Scholar 

  • Urani A, Roman FJ, Phan V-L, Su T-P, Maurice T (2001) The antidepressant-like effect induced by σ1-receptor agonists and neuroactive steroids in mice submitted to the forced swimming test. J Pharmacol Exp Ther 298:1269–1279

    Google Scholar 

  • Uzunov DP, Cooper TB, Costa E, Guidotti A (1996) Fluoxetine-elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. Proc Natl Acad Sci U S A 93:12599–12604

    Article  PubMed  CAS  Google Scholar 

  • Uzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, Guidotti A (1998) Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci U S A 95:3239–3244

    Article  PubMed  CAS  Google Scholar 

  • Uzunova V, Ceci M, Kohler C, Uzunov DP, Wrynn AS (2003) Region-specific dysregulation of allopregnanolone brain content in the olfactory bulbectomized rat model of depression. Brain Res 976:1–8

    Article  PubMed  CAS  Google Scholar 

  • Uzunova V, Wrynn AS, Kinnunen A, Ceci M, Kohler C, Uzunov DP (2004) Chronic antidepressants reverse cerebrocortical allopregnanolone decline in the olfactory-bulbectomized rat. Eur J Pharmacol 486:31–34

    Article  PubMed  CAS  Google Scholar 

  • Vallee M, George O, Vitiello S, Le Moal M, Mayo W (2004) New insights into the role of neuroactive steroids in cognitive aging. Exp Gerontol 39:1695–1704

    Article  PubMed  CAS  Google Scholar 

  • Vanselow W, Dennerstein L, Greenwood KM, de Lignieres B (1996) Effect of progesterone and its 5 alpha and 5 beta metabolites on symptoms of premenstrual syndrome according to route of administration. J Psychosom Obstet Gynaecol 17:29–38

    PubMed  CAS  Google Scholar 

  • Wieland S, Lan NC, Mirasedeghi S, Gee KW (1991) Anxiolytic activity of the progesterone metabolite 5α-pregnan-3α-ol-20-one. Brain Res 565:263–268

    Article  PubMed  CAS  Google Scholar 

  • Wieland S, Belluzi JD, Stein L, Lan NC (1995) Comparative behavioral characterization of the neuroactive steroids 3α-OH, 5α-pregnan-20-one and 3α-OH,5β-pregnan-20-one in rodents. Psychopharmacology (Biol) 118:65–71

    Article  CAS  Google Scholar 

  • Wolkowitz OM, Reus VI, Roberts E, Manfredi F, Chan T, Raum WJ, Ormiston S, Johnson R, Canick J, Brizendine L, Weingartner H (1997) Dehydroepiandrosterone (DHEA) treatment of depression. Biol Psychiatry 41:311–318

    Article  PubMed  CAS  Google Scholar 

  • Wolkowitz OM, Reus VI, Chan T, Manfredi F, Raum W, Johnson R, Canick J (1999a) Antiglucocorticoid treatment of depression: double-blind ketoconazole. Biol Psychiatry 45:1070–1074

    Article  PubMed  CAS  Google Scholar 

  • Wolkowitz OM, Reus VI, Keebler A, Nelson N, Friedland M, Brizendine L, Roberts E (1999b) Double-blind treatment of major depression with dehydroepiandrosterone. Am J Psychiatry 156:646–649

    PubMed  CAS  Google Scholar 

  • Wu F-S, Gibbs TT, Farb DH (1991) Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-d-aspartate receptor. Mol Pharmacol 40:333–336

    PubMed  CAS  Google Scholar 

  • Zwanzger P, Eser D, Padberg F, Baghai TC, Schüle C, Rupprecht R, di Michele F, Romeo E, Pasini A, Ströhle A (2004) Neuroactive steroids are not affected by panic induction with 50 μg cholecystokinin–tetrapeptide (CCK-4) in healthy volunteers. J Psychiatr Res 38:215–217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Mrs. A. Johnson and Mr. K. Neuner for valuable technical assistance in our studies. These studies were supported by the Deutsche Forschungsgemeinschaft and a Tandem project of the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Rupprecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eser, D., Schüle, C., Romeo, E. et al. Neuropsychopharmacological properties of neuroactive steroids in depression and anxiety disorders. Psychopharmacology 186, 373–387 (2006). https://doi.org/10.1007/s00213-005-0188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0188-z

Keywords

Navigation