Skip to main content

Advertisement

Log in

Δ9-THC administered into the medial prefrontal cortex disrupts the spatial working memory

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Δ9-Tetrahydrocannabinol (Δ9-THC) disrupts working memory. The prefrontal cortex (PFC) is involved in the processing of working memory, and its medial portion (mPFC) is part of a brain reward circuit as constituted by the mesocorticolimbic dopaminergic system.

Objective

This study examined the involvement of the mPFC in the effects of Δ9-THC on spatial working memory.

Methods

Ten male Wistar rats well-trained in a radial arm maze and with bilateral cannula implanted in the mPFC received Δ9-THC intracortically (Δ9-THC IC) at doses of 0 (VEH), 32, 100 or 180 μg, 5 min before a 5-s or a 1-h delayed task in order to measure a short- or long-term spatial working memory, respectively. By contrast, 11 other animals received Δ9-THC intraperitoneally (Δ9-THC IP) at doses of 0 (VEH), 0.32, 1 or 1.8 mg/kg, 30 min before a 5-s or a 1-h delayed task. Additionally, after a 15-day washout, the effect of an IP or IC pre-exposure of Δ9-THC was examined by repeating both dose–effect curves in a crossover order for the routes of administration.

Results

Δ9-THC IP produced significantly larger number of errors at doses of 0.32 or 1 mg/kg as compared to VEH in the 1-h post-delay performance. Δ9-THC 100 μg IC also produced significantly larger number of errors as compared to VEH and also to the other doses (32 or 180 μg) IC in the 1-h post-delay performance. Previous exposure to Δ9-THC IP or IC did not significantly affect the disruptive effect of this cannabinoid.

Conclusions

Δ9-THC administered directly in the mPFC impaired 1-h delayed task in the radial arm maze in a manner similar to that observed for its systemic administration, suggesting that the mPFC is involved in the disruptive effects of Δ9-THC on spatial working memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abekawa T, Ohmori T, Kouichi I, Koyama, T (2000) D1 dopamine receptor activation reduces extracellular glutamate and GABA concentration in the medial prefrontal cortex. Brain Res 867:250–254

    Article  PubMed  CAS  Google Scholar 

  • Abel EL (1971) Marijuana and memory: acquisition or retrieval? Science 173:1038–1040

    Article  PubMed  CAS  Google Scholar 

  • Acquas E, Pisanu A, Marrocu P, Di Chiara G (2000) Cannabinoid CB1 receptor agonists increase rat cortical and hippocampal acetylcholine release in vivo. Eur J Pharmacol 401:179–185

    Article  PubMed  CAS  Google Scholar 

  • Acquas E, Pisanu A, Marrocu P, Goldberg SR, Di Chiara G (2001) Δ9-Tetrahydrocannabinol enhances cortical and hippocampal acetylcholine release in vivo: a microdialysis study. Eur J Pharmacol 419:155–161

    Article  PubMed  CAS  Google Scholar 

  • Aigner TG (1988) Delta-9-tetrahydrocannabinol impairs visual recognition memory but not discrimination learning in rhesus monkeys. Psychopharmacology (Berl) 95:507–511

    Article  CAS  Google Scholar 

  • Arnsten AFT (1998) Cathecolamine modulation of prefrontal cortical cognitive function. Trends Cogn Sci 2:436–447

    Article  Google Scholar 

  • Aujla H, Beninger RJ (2001) Hippocampal–prefrontocortical circuits: PKA inhibition in the prefrontal cortex impairs delayed nonmatching in the radial maze in rats. Behav Neurosci 115:1204–1211

    Article  PubMed  CAS  Google Scholar 

  • Baddeley AD (1982) Working memory. Philos Trans R Soc Lond B 302:311–324

    Article  Google Scholar 

  • Baddeley AD (1997) Working memory. In: Gazzaniga MS (ed) The cognitive neuroscience. Bradford, New York, pp 755–764

    Google Scholar 

  • Baddeley AD, Logie RH (1999) Working memory: the multiple-component model. In: Miyake A, Shah P (eds) Models of working memory. Mechanism of active maintenance and executive control. Cambridge University Press, New York, pp 28–61

    Google Scholar 

  • Brodkin J, Moerschbaecher JM (1997) SR141716A antagonizes the disruptive effects of cannabinoid ligands on learning in rats. J Pharmacol Exp Ther 282:1526–1532

    PubMed  CAS  Google Scholar 

  • Carta G, Nava F, Gessa GL (1998) Inhibition of hippocampal acetylcholine release after acute and repeated Δ9-tetrahydrocannabinol in rats. Brain Res 809:1–4

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Paredes W, Lowinson JH, Gardner EL (1991) Δ9-Tetrahydrocannabinol enhances presynaptic dopamine efflux in medial prefrontal cortex. Eur J Pharmacol 190:25–62

    Google Scholar 

  • Da S, Takahashi RN (2002) SR 141716A prevents delta 9-tetrahydrocannabinol-induced spatial learning deficit in a Morris-type water maze in mice. Prog Neuropsychopharmacol Biol Psychiatry 26:321–325

    Article  PubMed  Google Scholar 

  • Darley CF, Tinklenberg JR (1974) Marijuana and memory. In: Miller LL (ed) Marijuana effects on human behavior. Academic, USA, pp 73–102

    Google Scholar 

  • Darley CF, Tinklenberg JR, Hollister TE, Atkinson RC (1973a) Marijuana and retrieval from short-term memory. Psychopharmacology (Berl) 29:231–233

    Article  CAS  Google Scholar 

  • Darley CF, Tinklenberg JR, Roth WT, Hollister TE, Atkinson RC (1973b) Influence of marijuana on storage and retrieval processes in memory. Mem Cognit 1:196–200

    Google Scholar 

  • Diana M, Melis M, Gessa GL (1998) Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. Eur J Neurosci 10:2825–2830

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G (1995) The role of dopamine in drug abuse viewed from the perspective of its motivation. Drug Alcohol Depend 38:95–137

    Article  PubMed  Google Scholar 

  • Everitt BJ, Wolf ME (2002) Psychomotor stimulant addiction: a neural system perspective. J Neurosci 22:3312–3320

    PubMed  CAS  Google Scholar 

  • Fehr KA, Kalant H, LeBlanc AE (1976) Residual learning deficit after heavy exposure to cannabis or alcohol in rats. Science 92:1249–1251

    Article  Google Scholar 

  • Floresco SB, Phillips AG (2001) Delay-dependent modulation of memory retrieval by infusion of a dopamine D1 agonist into the rat medial prefrontal cortex. Behav Neurosci 115(4):934–939

    Article  PubMed  CAS  Google Scholar 

  • Floresco SB, Seamans JK, Phillips AG (1997) Selective roles of hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J Neurosci 17(5):1880–1890

    PubMed  CAS  Google Scholar 

  • Fuster JM (1997) Network memory. Trends Neurosci 20:451–459

    Article  PubMed  CAS  Google Scholar 

  • Galbicka G, Lee DM, Branch MN (1980) Schedule-dependent tolerance to behavioral effects of Δ9-tetrahydrocannabinol when reinforcement frequencies are matched. Pharmacol Biochem Behav 12:85–91

    Article  PubMed  CAS  Google Scholar 

  • Gardner EL, Lowinson JH (1991) Marijuana's interaction with brain reward systems: update 1991. Pharmacol Biochem Behav 40(3):571–580

    Article  PubMed  CAS  Google Scholar 

  • Gessa GL, Casu MA, Carta G, Mascia MS (1998) Cannabinoids decrease acetylcholine release in the medial-prefrontal cortex and hippocampus, reversal by SR 141716A. Eur J Pharmacol 355(2):119–124

    Article  PubMed  CAS  Google Scholar 

  • Giacchino JL, Henriksen SJ (1996) Systemic morphine and local opioid effects on neuronal activity in the medial prefrontal cortex. Neuroscience 70:941–949

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1990) Cortical localization of working memory. In: McGaugh JL, Weinberger NM, Linch G (eds) Brain organization and memory. Cells, systems and circuits. Oxford Science Publications, New York, pp 285–298

    Google Scholar 

  • Goldman-Rakic PS (1992) Working memory and the mind. Sci Am 267:110–117

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1996) Regional and fractioning of working memory. Proc Natl Acad Sci U S A 93:13473–13480

    Article  PubMed  CAS  Google Scholar 

  • Hampson RE, Deadwyler SA (1999) Cannabinoids, hippocampal function and memory. Life Sci 65:715–723

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, Johnson RM, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    PubMed  CAS  Google Scholar 

  • Heyser CJ, Hampson RE, Deadwyler SA (1993) Effects of delta-9-tetrahydrocannabinol on delayed match to sample performance in rats: alterations in short-term memory associated with changes in task specific firing of hippocampal cells. J Pharmacol Exp Ther 264:294–307

    PubMed  CAS  Google Scholar 

  • Hollister LE (1986) Health aspects of cannabis. Pharmacol Rev 38:1–20

    PubMed  CAS  Google Scholar 

  • Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 10:695–703

    Article  CAS  Google Scholar 

  • Ilan AB, Smith ME, Gevins A (2004) Effects of marijuana on neurophysiological signals of working and episodic memory. Psychopharmacology (Berl) 176:214–222

    Article  CAS  Google Scholar 

  • Iversen L (2003) Cannabis and the brain. Brain 126:1252–1270

    Article  PubMed  Google Scholar 

  • Jentsch JD, Andrusiak E, Tran A, Bowers MB Jr, Roth RH (1997) Δ9-Tetrahydrocannabinol increases prefrontal cathecolaminergic utilization and impairs spatial working memory in the rat: blockade of dopaminergic effects with HA 966. Neuropsychopharmacology 16:426–432

    Article  PubMed  CAS  Google Scholar 

  • Kolb B (1984) Functions of the frontal cortex of the rat: a comparative review. Brain Res Rev 8:65–98

    Article  Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184

    Article  PubMed  CAS  Google Scholar 

  • Levin ED (1988) Scopolamine interactions with D1 and D2 antagonists on radial-arm maze performance in rats. Behav Neural Biol 50:240–245

    Article  PubMed  CAS  Google Scholar 

  • Lichtman AH, Martin BR (1996) Delta 9-tetrahydrocannabinol impairs spatial memory through a cannabinoid receptor mechanism. Psychopharmacology (Berl) 126:125–131

    Article  CAS  Google Scholar 

  • Lichtman AH, Dimen KR, Martin BR (1995) Systemic or intrahippocampal cannabinoid administration impairs spatial memory in rats. Psychopharmacology (Berl) 119:282–290

    Article  CAS  Google Scholar 

  • Lichtman AH, Varvel SA, Martin BR (2002) Endocannabinoids in cognition and dependence. Prostaglandins Leukot Essent Fat Acids 66:269–285

    Article  CAS  Google Scholar 

  • Mallet PE, Beninger RJ (1998) The cannabinoid CB1 receptor antagonist SR141716A attenuates the memory impairment produced by delta9-tetrahydrocannabinol or anandamide. Psychopharmacology (Berl) 140:11–19

    Article  CAS  Google Scholar 

  • Mishima K, Egashira N, Hirosawa N, Fujii M, Matsumoto Y, Iwasaki K, Fujiwara M (2001) Characteristics of learning and memory impairment induced by delta9-tetrahydrocannabinol in rats. Jpn J Pharmacol 87:297–308

    Article  PubMed  CAS  Google Scholar 

  • Mizumori SJY, Channon V, Rosenzweig MR, Bennet EL (1987) Short- and long-term components of working memory in the rat. Behav Neurosci 101:782–789

    Article  PubMed  CAS  Google Scholar 

  • Nakamura EM, Da Silva EA, Concílio GV, Wilkinson DA, Masur J (1991) Reversible effects of acute and long-term administration of Δ9-Tetrahydrocannabinol (THC) on memory in the rat. Drug Alcohol Depend 8:167–175

    Article  Google Scholar 

  • Nakamura-Palacios EM, Roelke CE (1997) Effects of acute or daily administration of diazepam on spatial learning and working memory. Drug Alcohol Depend 46:181–190

    Article  PubMed  CAS  Google Scholar 

  • Nakamura-Palacios EM, Caldas CK, Fiorini A, Chagas KD, Chagas KN, Vasquez EC (1996) Deficits of spatial learning and working memory in spontaneously hypertensive rats. Behav Brain Res 74:217–227

    Article  PubMed  CAS  Google Scholar 

  • Nakamura-Palacios EM, Winsauer PJ, Moerschbaecher JM (2000) Effects of the cannabinoid ligand SR 141716A alone or in combination with Δ9-Tetrahydrocannabinol or scopolamine on learning in squirrel monkeys. Behav Pharmacol 11:377–386

    PubMed  CAS  Google Scholar 

  • Nestler EJ (2001) Molecular neurobiology of addiction. Am J Addict 10:201–217

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ (2002) Common molecular and cellular substrates of addiction and memory. Neurobiol Learn Mem 78:637–647

    Article  PubMed  CAS  Google Scholar 

  • Oliveira RW, Nakamura-Palacios EM (2003) Haloperidol increases the disruptive effect of alcohol on spatial working memory in rats: a dopaminergic modulation in the medial prefrontal cortex. Psychopharmacology (Berl) 170:51–61

    Article  CAS  Google Scholar 

  • Olton DS (1979) Mazes, maps, and memory. Am Psychol 34:583–596

    Article  PubMed  CAS  Google Scholar 

  • Olton DS (1987) The radial arm maze as a tool in behavioral pharmacology. Physiol Behav 40:793–797

    Article  PubMed  CAS  Google Scholar 

  • Olton DS, Samuelson RJ (1976) Remembrance of places passed: spatial memory in rats. J Exp Psychol Anim Behav Process 2(2):97–116

    Article  Google Scholar 

  • Olton DS, Becker JT, Handelmann GE (1980) Hippocampal function: “working memory on cognitive mapping”. Physiology 8:239–246

    Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Peters YM, Lewis BL, O'Donnel P (2000) Synchronous activity in the ventral tegmental area and prefrontal cortex. Ann N Y Acad Sci 909:267–269

    PubMed  CAS  Google Scholar 

  • Phillips AG, Ahn S, Floresco SB (2004) Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task. J Neurosci 24(2):547–553

    Article  PubMed  CAS  Google Scholar 

  • Pistis M, Ferraro L, Pira L, Flore G, Tanganelli S, Gessa GL, Devoto P (2002) Delta(9)-tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: an in vivo microdialysis study. Brain Res 948:155–158

    Article  PubMed  CAS  Google Scholar 

  • Ploner CJ, Tschirch A, Osterndorf F, Dick S, Gaymard BM, Rivaud-Pechoux S, Sporkert F, Pragst F, Stadelmann AM (2002) Oculomotor effects of delta-9-tetrahydrocannabinol in humans: implications for the functional neuroanatomy of the brain cannabinoid system. Cereb Cortex 12:1016–1023

    Article  PubMed  Google Scholar 

  • Poddar MK, Dewey WL (1980) Effects of cannabinoids on catecholamine uptake and release in hypothalamic and striatal synaptosomes. J Pharmacol Exp Ther 214(10):63–67

    PubMed  CAS  Google Scholar 

  • Sanudo-Pena MC, Romero J, Seale GE, Fernandez-Ruiz JJ, Walker JM (2000) Activational role of cannabinoids on movement. Eur J Pharmacol 391(3):269–274

    Article  PubMed  CAS  Google Scholar 

  • Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1–57

    Article  PubMed  CAS  Google Scholar 

  • Seamans JK, Floresco SB, Phillips, AG (1995) Functional differences between the prelimbic and anterior cingulate regions of the rat prefrontal cortex. Behav Neurosci 109(6):1063–1073

    Article  PubMed  CAS  Google Scholar 

  • Seamans JK, Floresco SB, Phillips AG (1998) D1 receptor modulation of hippocampal–prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci 18(4):1613–1621

    PubMed  CAS  Google Scholar 

  • Shah P, Miyake A (1999) Models of working memory. An introduction. In: Miyake A, Shah P (eds) Models of working memory. Mechanisms of active maintenance and executive control. Cambridge University Press, New York, pp 1–27

    Google Scholar 

  • Solowij N (1998) Cannabis and cognitive functioning. Cambridge University Press, Cambridge

    Google Scholar 

  • Steketee JD (2003) Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants. Brain Res Brain Res Rev 41:203–228

    Article  PubMed  CAS  Google Scholar 

  • Stiglick A, Kalant H (1985) Residual effects of chronic cannabis treatment on behavior in mature rats. Psychopharmacology (Berl) 85:436–439

    Article  CAS  Google Scholar 

  • Taylor DA, Fennessy MR (1977) Biphasic nature of the effects of delta9-tetrahydrocannabinol on body temperature and brain amines of the rat. Eur J Pharmacol 46(2):93–99

    Article  PubMed  CAS  Google Scholar 

  • Tzavara ET, Wade M, Nomikos GG (2003) Biphasic effects of cannabinoids on acetylcholine release in the hippocampus: site and mechanism of action. J Neurosci 23(28):9374–9384

    PubMed  CAS  Google Scholar 

  • Tzchentke TM (2000) The medial prefrontal cortex as a part of the brain reward system. Amino Acids 19:211–219

    Article  PubMed  Google Scholar 

  • Tzchentke TM, Schmidt WJ (1999) Functional heterogeneity of the rat medial prefrontal cortex: effects of discrete subarea-specific lesions on drug-induced conditioned place preference and behavioural sensitization. Eur J Neurosci 11:4099–4109

    Article  PubMed  Google Scholar 

  • Varvel SA, Lichtman AH (2002) Evaluation of CB1 receptor knockout mice in the Morris water maze. J Pharmacol Exp Ther 301:915–924

    Article  PubMed  CAS  Google Scholar 

  • Varvel SA, Hamm RJ, Martin BR, Lichtman AH (2001) Differential effects of delta 9-THC on spatial reference and working memory in mice. Psychopharmacology (Berl) 157:142–150

    Article  CAS  Google Scholar 

  • Verty ANA, McGregor IS, Mallet PE (2004) The dopamine receptor antagonist SCH 23390 attenuates feeding induced by Δ9-tetrahydrocannabinol. Brain Res 1020:188–195

    Article  PubMed  CAS  Google Scholar 

  • Weisz DJ, Gunnell DL, Teyler TJ, Vardaris RM (1982) Changes in hippocampal CA1 population spikes following administration of delta-9-THC. Brain Res Bull 8(2):155–162

    Article  PubMed  CAS  Google Scholar 

  • Winsauer PJ, Lambert P, Moerschbaecher JM (1999) Cannabinoids ligands and their effects on learning and performance in Rhesus monkeys. Behav Pharmacol 10:497–511

    Article  PubMed  CAS  Google Scholar 

  • Zahrt J, Taylor JR, Mathew RG, Arnsten AFT (1997) Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 17:8528–8535

    PubMed  CAS  Google Scholar 

  • Zimmerberg B, Glick SD, Jarvik ME (1971) Impairment of recent memory by marihuana and THC in rhesus monkeys. Nature 233:343–345

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank CAPES and CNPq for student fellowships to AP Cruz, LCS Melo, AR Marinho, and SJR Valentim Jr. We are also grateful to Louis Allen Barker, Ph.D., Emeritus Professor of Pharmacology, Louisiana State University Health Sciences Center (New Orleans, LA) for his critical comments and suggestions on this manuscript, and also for revising the English language. The cannabinoid used in this study was provided through the courtesy of the National Institute on Drug Abuse (NIDA) and the National Institute of Mental Health (NIMH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester Miyuki Nakamura-Palacios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Melo, L.C.S., Cruz, A.P., Valentim, S.J.R. et al. Δ9-THC administered into the medial prefrontal cortex disrupts the spatial working memory. Psychopharmacology 183, 54–64 (2005). https://doi.org/10.1007/s00213-005-0141-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0141-1

Keywords

Navigation