Skip to main content
Log in

Escalated aggression as a reward: corticosterone and GABAA receptor positive modulators in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Individuals seek out the opportunity to fight, but the mechanisms behind this positively reinforcing effect of aggression have yet to be understood.

Objectives

The aims of this study were to (1) describe behavioral and corticosterone elevations that occur in aggressive mice conditioned to respond for the opportunity to fight another mouse, (2) determine if corticosterone elevations are necessary for operant responding and escalated aggression, and (3) determine if corticosterone elevations alter the aggression-heightening effects of γ-aminobutyric acid (GABA)A receptor positive modulators.

Methods and results

Aggressive male CFW mice were conditioned to respond under the control of a fixed-interval 10-min (FI10) schedule that reinforced their operant behavior by the presentation of an intruder mouse into their home cage. After the FI10, aggressive behavior was ca. 75% higher than the species-typical levels of fighting and plasma corticosterone was more than twice as high after briefly fighting and/or responding on the FI10 schedule. Inhibition of corticosterone synthesis by metyrapone (30–100 mg/kg) reduced both conditioned responding as well as the aggressive behavior after the FI. Although the benzodiazepine midazolam (0.3–3 mg/kg) heightened species-typical aggressive behavior, it did not increase the high level of aggression engendered by the FI schedule. However, midazolam (0.3 mg/kg) and the neurosteroid allopregnanolone (17 mg/kg) both heightened aggression when given after corticosterone synthesis inhibition by metyrapone (56 mg/kg).

Conclusions

These data suggest that corticosterone elevations are required for responding that is motivated by aggressive behavior and for escalated aggression that follows this responding. Corticosterone elevations also appear to inhibit the aggression heightening effect of GABAA receptor positive modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnone M, Dantzer R (1980) Effects of diazepam on extinction induced aggression in pigs. Pharmacol Biochem Behav 13:27–30

    Article  PubMed  CAS  Google Scholar 

  • Azrin NH, Hutchinson RR, McLaughlin R (1965) The opportunity for aggression as an operant reinforcer during aversive stimulation. J Exp Anal Behav 8:171–180

    Article  PubMed  CAS  Google Scholar 

  • Bond AJ, Curran HV, Bruce MS, O'Sullivan G, Shine P (1995) Behavioural aggression in panic disorder after 8 weeks' treatment with alprazolam. J Affect Disord 35:117–123

    Article  PubMed  CAS  Google Scholar 

  • Brick J, Pohorecky LA (1982) Ethanol–stress interaction: biochemical findings. Psychopharmacology 77:81–84

    Article  PubMed  CAS  Google Scholar 

  • Bronson FH, Desjardins C (1982) Endocrine responses to sexual arousal in male mice. Endocrinology 111:1286–1291

    PubMed  CAS  Google Scholar 

  • Cherek DR, Heistad GT (1971) Fixed-interval induced aggression. Psychon Sci 25:7–8

    Google Scholar 

  • Cherek DR, Thompson T, Heistad GT (1973) Responding maintained by the opportunity to attack during an interval food reinforcement schedule. J Exp Anal Behav 19:113–123

    Article  PubMed  CAS  Google Scholar 

  • Christmas AJ, Maxwell DR (1970) A comparison of the effects of some benzodiazepines and other drugs on aggressive and exploratory behaviour in mice and rats. Neuropharmacology 9:17–29

    Article  PubMed  CAS  Google Scholar 

  • Cole HF, Wolf HH (1970) Laboratory evaluation of aggressive behavior of the grasshopper mouse (Onychomys). J Pharmacol Sci 59:969–971

    Article  CAS  Google Scholar 

  • Connor JL (1974) Waning and recovery of conspecific aggression in the house mouse (Mus musculus L). J Comp Physiol Psychol 87:215–227

    Article  PubMed  CAS  Google Scholar 

  • Coover GD, Goldman L, Levine S (1971) Plasma corticosterone increases produced by extinction of operant behavior in rats. Physiol Behav 6:261–263

    Article  PubMed  CAS  Google Scholar 

  • Dantzer R, Arnone M, Mormede P (1980) Effects of frustration on behaviour and plasma corticosteroid levels in pigs. Physiol Behav 24:1–4

    Article  PubMed  CAS  Google Scholar 

  • de Almeida RMM, Miczek KA (2002) Aggression escalated by social instigation or by discontinuation of reinforcement (“frustration”) in mice: inhibition by anpirtoline-a 5-HT1B receptor agonist. Neuropsychopharmacology 27:171–181

    Article  PubMed  Google Scholar 

  • Deroche V, Piazza PV, Deminiere JM, Le Moal M, Simon H (1993) Rats orally self-administer corticosterone. Brain Res 622:315–320

    Article  PubMed  CAS  Google Scholar 

  • Deroche V, Marinelli M, Le Moal M, Piazza PV (1997) Glucocorticoids and behavioral effects of psychostimulants. II: cocaine intravenous self-administration and reinstatement depend on glucocorticoid levels. J Pharmacol Exp Ther 281:1401–1407

    PubMed  CAS  Google Scholar 

  • Deuschle M, Lecei O, Stalla GK, Landgraf R, Hamann B, Lederbogen F, Uhr M, Luppa P, Maras A, Colla M, Heuser I (2003) Steroid synthesis inhibition with ketoconazole and its effect upon the regulation of the hypothalamus–pituitary–adrenal system in healthy humans. Neuropsychopharmacology 28:379–383

    Article  PubMed  CAS  Google Scholar 

  • DiMascio A (1973) The effects of benzodiazepines on aggression: reduced or increased? Psychopharmacologia 30:95–102

    Article  PubMed  CAS  Google Scholar 

  • Dollard J, Doob L, Miller N, Mowrer O, Sears R (1939) Frustration and aggression. Yale University Press, New Haven

    Google Scholar 

  • Emmett-Oglesby MW, Lewy AJ, Albert LH, Seiden LS (1978) Role of lever responding and water presentation in altering rat brain catecholamine metabolism. J Pharmacol Exp Ther 204:406–415

    PubMed  CAS  Google Scholar 

  • Falk JL (1966) Schedule-induced polydipsia as a function of fixed interval length. J Exp Anal Behav 9:37–39

    Article  PubMed  CAS  Google Scholar 

  • Falk JL (1971) The nature and determinants of adjunctive behavior. Physiol Behav 6:577–588

    Article  PubMed  CAS  Google Scholar 

  • Falk JL (1977) The origin and functions of adjunctive behavior. Anim Learn Behav 5:325–335

    Google Scholar 

  • Ferrari PF, Parmigiani S, Rodgers RJ, Palanza P (1997) Differential effects of chlordiazepoxide on aggressive behavior in male mice: the influence of social factors. Psychopharmacology 134:258–265

    Article  PubMed  CAS  Google Scholar 

  • Fish EW, Faccidomo S, Miczek KA (1999) Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT1B receptor agonist CP-94,253. Psychopharmacology 146:391–399

    Article  PubMed  CAS  Google Scholar 

  • Fish EW, Faccidomo S, DeBold JF, Miczek KA (2001) Alcohol, allopregnanolone and aggression in mice. Psychopharmacology 153:473–483

    Article  PubMed  CAS  Google Scholar 

  • Fish EW, DeBold JF, Miczek KA (2002) Aggressive behavior as a reinforcer in mice: activation by allopregnanolone. Psychopharmacology 163:459–466

    Article  PubMed  CAS  Google Scholar 

  • Fry W, Kelleher RT, Cook L (1960) A mathematical index of performance on fixed-interval schedules of reinforcement. J Exp Anal Behav 3:193–199

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, DeBold JF (1993) 3-α-OH-DHP and 5-α-THDOC implants to the ventral tegmental area facilitate sexual receptivity in hamsters after progesterone priming to the ventral medial hypothalamus. Brain Res 612:130–137

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg B, Allee WC (1942) Some effects of conditioning on social dominance and subordination in inbred strains of mice. Physiol Zool 15:485–506

    Google Scholar 

  • Goeders NE (2002) The HPA axis and cocaine reinforcement. Psychoneuroendocrinology 27:13–33

    Article  PubMed  CAS  Google Scholar 

  • Goeders NE, Guerin GF (1996) Role of corticosterone in intravenous cocaine self-administration in rats. Neuroendocrinology 64(5):337–348

    PubMed  CAS  Google Scholar 

  • Gourley SL, DeBold JF, Yin W, Cook J, Miczek KA (2005) Benzodiazepines and heightened aggressive behavior in rats: reduction by GABAA/alpha1 receptor antagonists. Psychopharmacology (in press)

  • Grant EC, Mackintosh JH (1963) A comparison of the social postures of some common laboratory rodents. Behaviour 21:246–295

    Google Scholar 

  • Haller J, Barna I, Kovacs JL (1994) Alpha2-adrenoceptor blockade, pituitary–adrenal hormones, and agonistic interactions in rats. Psychopharmacology 115:478–484

    Article  PubMed  CAS  Google Scholar 

  • Haller J, Halasz J, Mikics E, Kruk MR, Makara GB (2000a) Ultradian corticosterone rhythm and the propensity to behave aggressively in male rats. J Neuroendocrinol 12:937–940

    Article  PubMed  CAS  Google Scholar 

  • Haller J, Millar S, van de SJ, de Kloet RE, Kruk MR (2000b) The active phase-related increase in corticosterone and aggression are linked. J Neuroendocrinol 12:431–436

    Article  PubMed  CAS  Google Scholar 

  • Hayden-Hixson DM, Ferris CF (1991) Cortisol exerts site-, context- and dose-dependent effects on agonistic responding in hamsters. J Neuroendocrinol 3:613–622

    Article  CAS  PubMed  Google Scholar 

  • Healy DG, Harkin A, Cryan JF, Kelly JP, Leonard BE (1999) Metyrapone displays antidepressant-like properties in preclinical paradigms. Psychopharmacology 145:303–308

    Article  PubMed  CAS  Google Scholar 

  • Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 20:7489–7495

    PubMed  CAS  Google Scholar 

  • Jenkins JS, Meakin JW, Nelson DH, Thorn GW (1958) Inhibition of adrenal steroid 11-oxygenation in the dog. Science 128:478–480

    Article  PubMed  CAS  Google Scholar 

  • Kelsey JE, Cassidy D (1976) The reinforcing properties of aggressive vs. nonaggressive social interactions in isolated male ICR mice (Mus musculus). Aggress Behav 2:275–284

    Article  Google Scholar 

  • Kohlert JG, Meisel RL (2001) Inhibition of aggression by progesterone and its metabolites in female Syrian hamsters. Aggress Behav 27:372–381

    Article  CAS  Google Scholar 

  • Krieger DT (1974) Food and water restriction shifts corticosterone, temperature, activity and brain amine periodicity. Endocrinology 95:1195–1201

    Article  PubMed  CAS  Google Scholar 

  • Krsiak M (1975) Tail rattling in aggressive mice as a measure of tranquilizing activity of drugs. Act Nerv Super 17:225–226

    CAS  Google Scholar 

  • Kruk MR, Halasz J, Weelis W, Haller J (2004) Fast positive feedback between adrenocortical stress response and a brain mechanism involved in aggressive behavior. Behav Neurosci 118:1062–1070

    Article  PubMed  CAS  Google Scholar 

  • Lagerspetz K (1964) Studies on the aggressive behaviour of mice. Ann Acad Sci Fenn 131:1–131

    Google Scholar 

  • Landau IT (1975a) Light–dark rhythms in aggressive behavior of the male golden hamster. Physiol Behav 14:767–774

    Article  PubMed  CAS  Google Scholar 

  • Landau IT (1975b) Effects of adrenalectomy on rhythmic and non-rhythmic aggressive behavior in the male golden hamster. Physiol Behav 14:775–780

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Rivier C (1997) An initial, 3-day-long treatment with alcohol induces a long-lasting phenomenon of selective tolerance in the activity of the rat hypothalamic–pituitary–adrenal axis. J Neurosci 17:8856–8866

    PubMed  CAS  Google Scholar 

  • Legrand R (1970) Successful aggression as the reinforcer for runway behavior of mice. Psychon Sci 20:303–305

    Google Scholar 

  • Leshner AI, Johnson AE (1974) Effects of adrenalectomy on the aggressiveness of neonatally androgenized female mice. Physiol Behav 13:703–705

    Article  PubMed  CAS  Google Scholar 

  • Leshner AI, Politch JA (1979) Hormonal control of submissiveness in mice: irrelevance of the androgens and relevance of the pituitary–adrenal hormones. Physiol Behav 22:531–534

    Article  PubMed  CAS  Google Scholar 

  • Lewy AJ, Seiden LS (1972) Operant behavior changes norepinephrine metabolism in rat brain. Science 175:454–456

    Article  PubMed  CAS  Google Scholar 

  • Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007

    Article  PubMed  CAS  Google Scholar 

  • Mantsch JR, Goeders NE (1999) Ketoconazole blocks the stress-induced reinstatement of cocaine-seeking behavior in rats: relationship to the discriminative stimulus effects of cocaine. Psychopharmacology 142:399–407

    Article  PubMed  CAS  Google Scholar 

  • Martinez M, Guillen-Salazar F, Salvador A, Simon VM (1995) Successful intermale aggression and conditioned place preference in mice. Physiol Behav 58:323–328

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15

    Article  PubMed  Google Scholar 

  • Meisel RL, Joppa MA (1994) Conditioned place preference in female hamsters following aggressive or sexual encounters. Physiol Behav 56:1115–1118

    Article  PubMed  CAS  Google Scholar 

  • Merali Z, McIntosh J, Kent P, Michaud D, Anisman H (1998) Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala. J Neurosci 18:4758–4766

    PubMed  CAS  Google Scholar 

  • Miczek KA (1974) Intraspecies aggression in rats: effects of d-amphetamine and chlordiazepoxide. Psychopharmacologia 39:275–301

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, de Almeida RMM (2001) Oral drug self-administration in the home cage of mice: alcohol-heightened aggression and inhibition by the 5-HT1B agonist anpirtoline. Psychopharmacology (Berl) 157:421–429

    Article  CAS  Google Scholar 

  • Miczek KA, O'Donnell JM (1978) Intruder-evoked aggression in isolated and nonisolated mice: effects of psychomotor stimulants and l-dopa. Psychopharmacology 57:47–55

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, O'Donnell JM (1980) Alcohol and chlordiazepoxide increase suppressed aggression in mice. Psychopharmacology 69:39–44

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, Weerts EM, Tornatzky W, DeBold JF, Vatne TM (1992) Alcohol and “bursts” of aggressive behavior: ethological analysis of individual differences in rats. Psychopharmacology 107:551–563

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, Weerts EM, Vivian JA, Barros HM (1995) Aggression, anxiety and vocalizations in animals: GABA(A) and 5-HT anxiolytics. Psychopharmacology 121:38–56

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, Barros HM, Sakoda L, Weerts EM (1998) Alcohol and heightened aggression in individual mice. Alcohol Clin Exp Res 22:1698–1705

    PubMed  CAS  Google Scholar 

  • Miczek KA, Nikulina E, Kream R, Carter G, Espejo E (1999) Behavioral sensitization to cocaine after a brief social defeat stress: c-fos expression in the PAG. Psychopharmacology 141:225–234

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, Fish EW, DeBold JF, de Almeida RMM (2002) Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and γ-aminobutyric acid systems. Psychopharmacology 163:434–458

    Article  PubMed  CAS  Google Scholar 

  • Mikics E, Kruk MR, Haller J (2004) Genomic and nongenomic effects of glucocorticoids on aggressive behavior in male rats. Psychoneuroendocrinology 29:618–635

    Article  PubMed  CAS  Google Scholar 

  • Mos J, Olivier B, van der Poel AM (1987) Modulary actions of benzodiazepine receptor ligands on agonistic behaviour. Physiol Behav 41:265–278

    Article  PubMed  CAS  Google Scholar 

  • Orchinik M, Murray TF, Moore FL (1991) A corticosteroid receptor in neuronal membranes. Science 252:1848–1851

    Article  PubMed  CAS  Google Scholar 

  • Orchinik M, Carroll SS, Li YH, McEwen BS, Weiland NG (2001) Heterogeneity of hippocampal GABA(A) receptors: regulation by corticosterone. J Neurosci 21:330–339

    PubMed  CAS  Google Scholar 

  • Piazza PV, Lemoal M (1997) Glucocorticoids as a biological substrate of reward: physiological and pathophysiological implications. Brain Res Rev 25:359–372

    Article  PubMed  CAS  Google Scholar 

  • Piazza PV, Deroche V, Deminiere JM, Maccari S, Le Moal M, Simon H (1993) Corticosterone in the range of stress-induced levels possesses reinforcing properties: implications for sensation-seeking behaviors. Proc Natl Acad Sci U S A 90:11738–11742

    Article  PubMed  CAS  Google Scholar 

  • Potegal M (1984) The persistence of attack satiation in female golden hamsters. Aggress Behav 10:303–307

    Article  Google Scholar 

  • Potegal M, Tenbrink L (1984) Behavior of attack-primed and attack-satiated female golden hamsters (Mesocricetus auratus). J Comp Psychol 98:66–75

    Article  Google Scholar 

  • Reddy DS (2003) Is there a physiological role for the neurosteroid THDOC in stress-sensitive conditions? Trends Pharmacol Sci 24:103–106

    Article  PubMed  CAS  Google Scholar 

  • Reddy DS, Rogawski MA (2002) Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA(A) receptor function and seizure susceptibility. J Neurosci 22:3795–3805

    PubMed  CAS  Google Scholar 

  • Rivier C (1993) Female rats release more corticosterone than male in response to alcohol: influence of circulating sex steroids and possible consequences for blood alcohol levels. Alcohol Clin Exp Res 17:854–859

    Article  PubMed  CAS  Google Scholar 

  • Roberts WW, Keiss H (1964) Attack elicited by hypothalamic stimulation in cats raised in social isolation. J Comp Physiol Psychol 58:187–193

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ, Waters AJ (1985) Benzodiazepines and their antagonists: a pharmacoethological analysis with particular reference to effects on “aggression”. Neurosci Biobehav Rev 9:21–35

    Article  PubMed  CAS  Google Scholar 

  • Roitman MF, Stuber GD, Phillips PEM, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265–1271

    Article  PubMed  CAS  Google Scholar 

  • Rotllant D, Ons S, Carrasco J, Armario A (2002) Evidence that metyrapone can act as a stressor: effect on pituitary–adrenal hormones, plasma glucose and brain c-fos induction. Eur J Neurosci 16:693–700

    Article  PubMed  Google Scholar 

  • Salamone JD, Cousins MS, McCullough LH, Carriero DL, Berkowitz RJ (1994) Nucleus accumbens dopamine release increases during instrumental level pressing for food but not free food consumption. Pharmacol Biochem Behav 49:25–31

    Article  PubMed  CAS  Google Scholar 

  • Scott JP (1958) Aggression. University of Chicago Press, Chicago

    Google Scholar 

  • Scott JP (1966) Agonistic behavior of mice and rats: a review. Am Zool 6:683–701

    PubMed  CAS  Google Scholar 

  • Sofia RD, Salama AI (1970) Circadian rhythm for experimentally-induced aggressive behavior in mice. Life Sci 9:331–338

    Article  PubMed  CAS  Google Scholar 

  • Stork O, Welzl H, Cremer H, Schachner M (1997) Increased intermale aggression and neuroendocrine response in mice deficient for the neural cell adhesion molecule (NCAM). Eur J Neurosci 9:1117–1125

    Article  PubMed  CAS  Google Scholar 

  • Tellegen A, Horn JM (1972) Primary aggressive motivation in three inbred strains of mice. J Comp Physiol Psychol 78:297–304

    Article  PubMed  CAS  Google Scholar 

  • Tellegen A, Horn JM, Legrand RG (1969) Opportunity for aggression as a reinforcer in mice. Psychon Sci 14:104–105

    Google Scholar 

  • Thompson T (1964) Visual reinforcement in fighting cocks. J Exp Anal Behav 7:45–49

    Article  PubMed  CAS  Google Scholar 

  • Thompson T (1969) Aggressive behaviour of Siamese fighting fish. In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica, Amsterdam, pp 15–31

    Google Scholar 

  • Tomie A, Silberman Y, Williams K, Pohorecky LA (2002) Pavlovian autoshaping procedures increase plasma corticosterone levels in rats. Pharmacol Biochem Behav 72:507–513

    Article  PubMed  CAS  Google Scholar 

  • Van Hemel PE, Myer JS (1970) Satiation of mouse killing by rats in an operant situation. Psychon Sci 21:129–130

    Google Scholar 

  • Van Vugt DA, Piercy J, Farley AE, Reid RL, Rivest S (1997) Leutinizing hormone secretion and corticotropin-releasing factor gene expression in the paraventricular nucleus of rhesus monkeys following cortisol synthesis inhibition. Endocrinology 138:2249–2258

    Article  PubMed  Google Scholar 

  • Weerts EM, Miczek KA (1996) Primate vocalizations during social separation and aggression: effects of alcohol and benzodiazepines. Psychopharmacology 127:255–264

    Article  PubMed  CAS  Google Scholar 

  • Weerts EM, Tornatzky W, Miczek KA (1993) “Anxiolytic” and “anxiogenic” benzodiazepines and beta-carbolines: effects on aggressive and social behavior in rats and squirrel monkeys. Psychopharmacology 110:451–459

    Article  PubMed  CAS  Google Scholar 

  • Weisman AM, Berman ME, Taylor SP (1998) Effects of clorazepate, diazepam, and oxazepam on a laboratory measurement of aggression in men. Int Clin Psychopharmacol 13:183–188

    Article  PubMed  CAS  Google Scholar 

  • Winslow JT, Miczek KA (1984) Habituation of aggressive behavior in mice: a parametric study. Aggress Behav 10:103–113

    Article  Google Scholar 

  • Wood GE, Young LT, Reagan LP, McEwen BS (2003) Acute and chronic restraint stress alter the incidence of social conflict in male rats. Horm Behav 43:205–213

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by USPHS research grant AA05122 and grants from the Alcoholic Beverage Medical Research Foundation. E.W.F. is currently supported by a Canadian Institutes of Health Research postdoctoral fellowship. The authors extend their appreciation to J. Thomas Sopko and Dr. Ella Nikulina for their technical assistance, to Sara Faccidomo for helping to prepare the manuscript, and to Drs. Robert Cook and Steven C. Heinrichs for comments on an earlier version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W. Fish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fish, E.W., DeBold, J.F. & Miczek, K.A. Escalated aggression as a reward: corticosterone and GABAA receptor positive modulators in mice. Psychopharmacology 182, 116–127 (2005). https://doi.org/10.1007/s00213-005-0064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0064-x

Keywords

Navigation