Skip to main content
Log in

Facilitation of brain stimulation reward by MK-801 (dizocilpine) may be independent of D2-like dopamine receptor stimulation in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Dopamine (DA) and glutamate (Glu) interactions in the mesocorticolimbic pathway may regulate motivation and reward and contribute to schizophrenia and drug abuse. We have recently demonstrated synergistic effects of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor blockade and D2/3 DA receptor stimulation in brain stimulation reward (BSR).

Objectives

This study was conducted to explore interactions between DA and Glu systems in BSR using the NMDA receptor antagonist MK-801 and the DA receptor agonists 7-OH-DPAT and apomorphine.

Methods

Systemic effects of these compounds were measured in male Sprague–Dawley rats using rate–frequency threshold analysis of ventral tegmental area (VTA) BSR (n=27). Effects of bilateral applications of MK-801 and 7-OH-DPAT into the nucleus accumbens (NAS) shell subregion were also investigated (n=10).

Results

MK-801 (0.03 or 0.13 mg kg−1 i.p. or 0.66 μg intra-NAS) reduced reward thresholds while 7-OH-DPAT (0.03 mg kg−1 s.c. or 5.0 μg intra-NAS) or apomorphine (0.05 mg kg−1, s.c.) increased this measure. MK-801 combined with apomorphine or with 7-OH-DPAT, systemically or in the NAS shell, induced additive effects.

Conclusions

Lack of interaction between DA agonists and MK-801 in this study contrasts with our previous work showing synergistic reward-decreased effects of AMPA/kainate receptor blockade and D2/3 DA receptor stimulation in the NAS shell, and indicates possible independence of DA and N-methyl-d-aspartate (NMDA) receptor effects in VTA electrical self-stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn KC, Pazderka-Robinson H, Clements RLH, Ashcroft R, Ali T, Morse C, Greenshaw AJ (2005) Differential effects of intra-midbrain raphe and systemic 8-OH-DPAT on VTA self-stimulation thresholds. Psychopharmacology (Berl) 178(4):381–388

    Article  CAS  Google Scholar 

  • Baldo BA, Jain K, Veraldi L, Koob GF, Markou A (1999) A dopamine D1 agonist elevates self-stimulation thresholds: comparison to other dopamine-selective drugs. Pharmacol Biochem Behav 62:659–672

    Article  PubMed  CAS  Google Scholar 

  • Biondo AM, Clements RLH, Hayes DJ, Eshpeter B, Greenshaw AJ (2005) NMDA or AMPA/kainate receptor blockade prevents acquisition of conditioned place preference induced by D2/3 dopamine receptor stimulation in rats. Psychopharmacology (Berl) 179(1):189–197

    Article  CAS  Google Scholar 

  • Bubser M, Tzschentke T, Hauber W (1995) Behavioural and neurochemical interactions of the AMPA antagonist GYKI 52466 and the non-competitive NMDA antagonist dizocilpine in rats. J Neural Transm Gen Sect 101:115–126

    Article  PubMed  CAS  Google Scholar 

  • Burns LH, Everitt BJ, Kelley AE, Robbins TW (1994) Glutamate–dopamine interactions in the ventral striatum: role in locomotor activity and responding with conditioned reinforcement. Psychopharmacology (Berl) 115:516–528

    Article  CAS  Google Scholar 

  • Carlezon WA Jr, Wise RA (1993) Morphine-induced potentiation of brain stimulation reward is enhanced by MK-801. Brain Res 620:339–342

    Article  PubMed  Google Scholar 

  • Carlezon WA Jr, Wise RA (1996) Microinjections of phencyclidine (PCP) and related drugs into nucleus accumbens shell potentiate medial forebrain bundle brain stimulation reward. Psychopharmacology (Berl) 128:413–420

    Article  CAS  Google Scholar 

  • Chao SZ, Ariano MA, Peterson DA, Wolf ME (2002) D1 dopamine receptor stimulation increases GluR1 surface expression in nucleus accumbens neurons. J Neurochem 83:704–712

    Article  PubMed  CAS  Google Scholar 

  • Choi KH, Zarandi B, Todd KG, Biondo AM, Greenshaw AJ (2000) Effects of AMPA/kainate receptor blockade on responses to dopamine receptor agonists in the core and shell of the rat nucleus accumbens. Psychopharmacology (Berl) 150:102–111

    Article  CAS  Google Scholar 

  • Choi KH, Clements RLH, Greenshaw AJ (2005) Simultaneous AMPA/kainate receptor blockade and dopamine D2/3 receptor stimulation in the nucleus accumbens decreases brain stimulation reward in rats. Behav Brain Res 158:79–88

    Article  PubMed  CAS  Google Scholar 

  • Corbett D (1989) Possible abuse potential of the NMDA antagonist MK-801. Behav Brain Res 34:239–246

    Article  PubMed  CAS  Google Scholar 

  • Danysz W, Essmann U, Bresink I, Wilke R (1994) Glutamate antagonists have different effects on spontaneous locomotor activity in rats. Pharmacol Biochem Behav 48:111–118

    Article  PubMed  CAS  Google Scholar 

  • Depoortere R, Perrault G, Sanger DJ (1996) Behavioural effects in the rat of the putative dopamine D3 receptor agonist 7-OH-DPAT: comparison with quinpirole and apomorphine. Psychopharmacology (Berl) 124:231–240

    Article  CAS  Google Scholar 

  • Depoortere R, Perrault G, Sanger DJ (1999) Intracranial self-stimulation under a progressive-ratio schedule in rats: effects of strength of stimulation, d-amphetamine, 7-OH-DPAT and haloperidol. Psychopharmacology (Berl) 142:221–229

    Article  CAS  Google Scholar 

  • Diaz J, Pilon C, Le Foll B, Gros C, Triller A, Schwartz JC, Sokoloff P (2000) Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J Neurosci 20:8677–8684

    PubMed  CAS  Google Scholar 

  • Duncan GE, Zorn S, Lieberman JA (1999) Mechanisms of typical and atypical antipsychotic drug action in relation to dopamine and NMDA receptor hypofunction hypotheses of schizophrenia. Mol Psychiatry 4:418–428

    Article  PubMed  CAS  Google Scholar 

  • Fiorino DF, Coury A, Fibiger HC, Phillips AG (1993) Electrical stimulation of reward sites in the ventral tegmental area increases dopamine transmission in the nucleus accumbens of the rat. Behav Brain Res 55:131–141

    Article  PubMed  CAS  Google Scholar 

  • Fouriezos G, Francis S (1992) Apomorphine and electrical self-stimulation of rat brain. Behav Brain Res 52:73–80

    Article  PubMed  CAS  Google Scholar 

  • Gallistel CR, Karras D (1984) Pimozide and amphetamine have opposing effects on the reward summation function. Pharmacol Biochem Behav 20:73–77

    Article  PubMed  CAS  Google Scholar 

  • Garris PA, Kilpatrick M, Bunin MA, Michael D, Walker QD, Wightman RM (1999) Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398:67–69

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DB, Millar J, Cooper SJ (1995) The putative dopamine D3 agonist, 7-OH-DPAT, reduces dopamine release in the nucleus accumbens and electrical self-stimulation to the ventral tegmentum. Brain Res 681:1–7

    Article  PubMed  CAS  Google Scholar 

  • Greenshaw AJ (1997) A simple technique for determining stereotaxic coordinates for brain implantation of probes at rotated angles in one or two planes. J Neurosci Methods 78:169–172

    Article  PubMed  CAS  Google Scholar 

  • Greenshaw AJ, Wishart TB (1987) Drug action and reward processes. In: Greenshaw AJ, Dourish CT (eds) Experimental psychopharmacology: concepts and methods. Humana Press, Totowa, pp 299–340

    Chapter  Google Scholar 

  • Gronier B, Debonnel G (1999) Involvement of sigma receptors in the modulation of the glutamatergic/NMDA neurotransmission in the dopaminergic systems. Eur J Pharmacol 368:183–196

    Article  PubMed  CAS  Google Scholar 

  • Hatcher JP, Hagan JJ (1998) The effects of dopamine D3/D2 receptor agonists on intracranial self stimulation in the rat. Psychopharmacology (Berl) 140:405–410

    Article  CAS  Google Scholar 

  • Heidbreder C, Gewiss M, De Mot B, Mertens I, De Witte P (1992) Balance of glutamate and dopamine in the nucleus accumbens modulates self-stimulation behavior after injection of cholecystokinin and neurotensin in the rat brain. Peptides 13:441–449

    Article  PubMed  CAS  Google Scholar 

  • Herberg LJ, Rose IC (1989) The effect of MK-801 and other antagonists of NMDA-type glutamate receptors on brain-stimulation reward. Psychopharmacology (Berl) 99:87–90

    Article  CAS  Google Scholar 

  • Imperato A, Tanda G, Frau R, Di Chiara G (1988) Pharmacological profile of dopamine receptor agonists as studied by brain dialysis in behaving rats. J Pharmacol Exp Ther 245:257–264

    PubMed  CAS  Google Scholar 

  • Iversen SD (1995) Interactions between excitatory amino acids and dopamine systems in the forebrain: implications for schizophrenia and Parkinson's disease. Behav Pharmacol 6:478–491

    PubMed  CAS  Google Scholar 

  • Kaddis FG, Uretsky NJ, Wallace LJ (1995) DNQX in the nucleus accumbens inhibits cocaine-induced conditioned place preference. Brain Res 697:76–82

    Article  PubMed  CAS  Google Scholar 

  • Kling-Petersen T, Ljung E, Wollter L, Svensson K (1995) Effects of dopamine D3 preferring compounds on conditioned place preference and intracranial self-stimulation in the rat. J Neural Transm Gen Sect 101:27–39

    Article  PubMed  CAS  Google Scholar 

  • Knapp CM, Kornetsky C (1996) Low-dose apomorphine attenuates morphine-induced enhancement of brain stimulation reward. Pharmacol Biochem Behav 55:87–91

    Article  PubMed  CAS  Google Scholar 

  • Lévesque D, Diaz J, Pilon C, Martres MP, Giros B, Souil E, Schott D, Morgat JL, Schwartz JC, Sokoloff P (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci U S A 89:8155–8159

    Article  PubMed  Google Scholar 

  • Lewis RC, Elliott KAC (1950) Clinical uses of an artificial cerebrospinal fluid. J Neurosurg 7:256–260

    Article  PubMed  Google Scholar 

  • Li Y, Vartanian AJ, White FJ, Xue CJ, Wolf ME (1997) Effects of the AMPA receptor antagonist NBQX on the development and expression of behavioral sensitization to cocaine and amphetamine. Psychopharmacology (Berl) 134:266–276

    Article  CAS  Google Scholar 

  • Ljungberg T, Ungerstedt U (1977) Different behavioural patterns induced by apomorphine: evidence that the method of administration determines the behavioural response to the drug. Eur J Pharmacol 46:41–50

    Article  PubMed  CAS  Google Scholar 

  • Maldonado-Irizarry CS, Swanson CJ, Kelley AE (1995) Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. J Neurosci 15:6779–6788

    PubMed  CAS  Google Scholar 

  • Olds ME (1996) Dopaminergic basis for the facilitation of brain stimulation reward by the NMDA receptor antagonist, MK-801. Eur J Pharmacol 306:23–32

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, Toronto, Canada

    Google Scholar 

  • Pennartz CM, Groenewegen HJ, Lopes da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 42:719–761

    Article  PubMed  CAS  Google Scholar 

  • Phillips AG, Blaha CD, Fibiger HC (1989) Neurochemical correlates of brain-stimulation reward measured by ex vivo and in vivo analyses. Neurosci Biobehav Rev 13:99–104

    Article  PubMed  CAS  Google Scholar 

  • Pugsley TA, Davis MD, Akunne HC, MacKenzie RG, Shih YH, Damsma G, Wikstrom H, Whetzel SZ, Georgic LM, Cooke LW et al (1995) Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907. J Pharmacol Exp Ther 275:1355–1366

    PubMed  CAS  Google Scholar 

  • Ranaldi R, Bauco P, Wise RA (1997) Synergistic effects of cocaine and dizocilpine (MK-801) on brain stimulation reward. Brain Res 760:231–237

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Reid AA, Silverthorn M, DeCosta BR, Monn JA, Thurkauf A, Jacobson AE, Rice KC, Rogawski MA (1992) Structure activity studies on the interaction of biogenic amine reuptake inhibitors and potassium channel blockers with MK-801 sensitive (PCP site 1) and insensitive (PCP site 2) [3H]TCP binding sites in guinea pig brain. In: Kamenka JM, Domino EF (eds) Multiple sigma and PCP receptor ligands. NPP Books, Ann Arbor, MI, pp 137–146

    Google Scholar 

  • Sanger DJ, Depoortere R, Perrault G (1997) Discriminative stimulus effects of apomorphine and 7-OH-DPAT: a potential role for dopamine D3 receptors. Psychopharmacology (Berl) 130:387–395

    Article  CAS  Google Scholar 

  • Schoemaker H (1993) [3H]7-OH-DPAT labels both dopamine D3 receptors and sigma sites in the bovine caudate nucleus. Eur J Pharmacol 242:R1–R2

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 320:145–160

    Article  PubMed  CAS  Google Scholar 

  • Stephens DN, Cole BJ (1996) AMPA antagonists differ from NMDA antagonists in their effects on operant DRL and delayed matching to position tasks. Psychopharmacology (Berl) 126:249–259

    Article  CAS  Google Scholar 

  • Strömbom U (1977) Antagonism by haloperidol of locomotor depression induced by small doses of apomorphine. J Neural Transm 40:191–194

    Article  PubMed  Google Scholar 

  • Svensson K, Carlsson A, Waters N (1994) Locomotor inhibition by the D3 ligand R-(+)-7-OH-DPAT is independent of changes in dopamine release. J Neural Transm Gen Sect 95:71–74

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM, Schmidt WJ (1999) Memantine does not substantially affect brain stimulation reward: comparison with MK-801. Brain Res 845:192–198

    Article  PubMed  CAS  Google Scholar 

  • Wan FJ, Swerdlow NR (1996) Sensorimotor gating in rats is regulated by different dopamine–glutamate interactions in the nucleus accumbens core and shell subregions. Brain Res 722:168–176

    Article  PubMed  CAS  Google Scholar 

  • Waters N, Svensson K, Haadsma-Svensson SR, Smith MW, Carlsson A (1993) The dopamine D3-receptor: a postsynaptic receptor inhibitory on rat locomotor activity. J Neural Transm (Gen Sect) 94:11–19

    Article  CAS  Google Scholar 

  • Wise RA (1996) Addictive drugs and brain stimulation reward. Annu Rev Neurosci 19:319–340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Canadian Institutes of Health Research. We express our thanks to Satyabrata Kar and David J. Hayes for their histology assistance. R.L.H. Clements was the recipient of a postgraduate scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Greenshaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clements, R.L.H., Greenshaw, A.J. Facilitation of brain stimulation reward by MK-801 (dizocilpine) may be independent of D2-like dopamine receptor stimulation in rats. Psychopharmacology 182, 65–74 (2005). https://doi.org/10.1007/s00213-005-0039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0039-y

Keywords

Navigation